Text Classification
Transformers
Safetensors
English
bert
multi-text-classification
classification
intent-classification
intent-detection
nlp
natural-language-processing
edge-ai
iot
smart-home
location-intelligence
voice-assistant
conversational-ai
real-time
boltuix
neurobert
local-search
business-category-classification
fast-inference
lightweight-model
on-device-nlp
offline-nlp
mobile-ai
multilingual-nlp
intent-routing
category-detection
query-understanding
artificial-intelligence
assistant-ai
smart-cities
customer-support
productivity-tools
contextual-ai
semantic-search
user-intent
microservices
smart-query-routing
industry-application
aiops
domain-specific-nlp
location-aware-ai
intelligent-routing
edge-nlp
smart-query-classifier
zero-shot-classification
smart-search
location-awareness
contextual-intelligence
geolocation
query-classification
multilingual-intent
chatbot-nlp
enterprise-ai
sdk-integration
api-ready
developer-tools
real-world-ai
geo-intelligence
embedded-ai
smart-routing
voice-interface
smart-devices
contextual-routing
fast-nlp
data-driven-ai
inference-optimization
digital-assistants
neural-nlp
ai-automation
lightweight-transformers
Update README.md
Browse files
README.md
CHANGED
@@ -149,16 +149,16 @@ With support for **120+ local business categories**, NeuroLocale combines open-s
|
|
149 |
## ๐ง How to Use
|
150 |
|
151 |
```python
|
152 |
-
from transformers import pipeline # ๐ค Import
|
153 |
|
154 |
-
# ๐ Load
|
155 |
classifier = pipeline("text-classification", model="boltuix/NeuroLocale")
|
156 |
|
157 |
# ๐ง Predict the user's intent from a sample input sentence
|
158 |
-
result = classifier("
|
159 |
|
160 |
# ๐ Print the classification result with label and confidence score
|
161 |
-
print(result) # ๐จ๏ธ Example
|
162 |
```
|
163 |
|
164 |
---
|
|
|
149 |
## ๐ง How to Use
|
150 |
|
151 |
```python
|
152 |
+
from transformers import pipeline # ๐ค Import Hugging Face pipeline
|
153 |
|
154 |
+
# ๐ Load the fine-tuned intent classification model
|
155 |
classifier = pipeline("text-classification", model="boltuix/NeuroLocale")
|
156 |
|
157 |
# ๐ง Predict the user's intent from a sample input sentence
|
158 |
+
result = classifier("Where can I see ocean creatures behind glass?") # ๐ Expecting Aquarium
|
159 |
|
160 |
# ๐ Print the classification result with label and confidence score
|
161 |
+
print(result) # ๐จ๏ธ Example output: [{'label': 'aquarium', 'score': 0.999}]
|
162 |
```
|
163 |
|
164 |
---
|