File size: 107,898 Bytes
d603527 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:155651
- loss:MultipleNegativesSymmetricRankingLoss
base_model: jinaai/jina-embeddings-v2-small-en
widget:
- source_sentence: Experienced in debt mediation and client intake
sentences:
- "=== PERSON ===\nTomasz Bialas\nN/A\nWarsaw, Mazowieckie, Poland\n2530\n\n===\
\ ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Retail Team Lead \n\
\ 2023-01 - N/A\n N/A\n Google\n google\n Software Development\n N/A\n \
\ 33910493\n\n>>> SCHOOL ROLES <<<\n\nSchool Role #1:\n N/A\n N/A - 2018\n \
\ N/A\n Warsaw University of Technology\n warsaw-university-of-technology\n\
\ N/A\n N/A\n 122888\n\nSchool Role #2:\n N/A\n N/A - 2011\n N/A\n Warsaw\
\ University of Technology\n warsaw-university-of-technology\n N/A\n N/A\n\
\ 122888\n\nSchool Role #3:\n N/A\n N/A - 2015\n N/A\n SGH Warsaw School\
\ of Economics\n sgh-warsaw-school-of-economics\n N/A\n The oldest school of\
\ economics in Poland.\n 136781"
- "=== PERSON ===\nLori Sokoll\nAn energetic, healthcare professional committed\
\ to our patients and their healthcare journey. I am driven to assist all patients\
\ and their families in the coordination of physician meetings, diagnostic testing\
\ and treatment planning. \nWhite Lake, Michigan, United States\n85\n\n=== ROLES\
\ ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Oncology Care Coordinator\n\
\ 2012-07 - N/A\n N/A\n DETROIT MEDICAL CENTER COOPERATIVE\n detroit-medical-center-cooperative\n\
\ N/A\n N/A\n 1\n\n>>> SCHOOL ROLES <<<\nNo school roles listed."
- "=== PERSON ===\nJuliano Romaneli\ncomecei em 2015 como auxiliar por 2anos. Fui\
\ promovido a op.de equipamentos móveis. Comecei a estudar logística tem três\
\ meses e espero me aprofundar mais e mais.\nVitoria, Brazil Metropolitan Area\n\
61\n\n=== ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n operador de\
\ equipamentos moveis\n N/A - N/A\n N/A\n Multitex Logística Ltda\n multitex-log-stica-ltda\n\
\ Truck Transportation\n Soluções logísticas com tecnologias inovadoras\n 2163\n\
\n>>> SCHOOL ROLES <<<\nNo school roles listed."
- source_sentence: Invoice processing and accounts payable professional
sentences:
- "=== PERSON ===\nGrace Michael\nN/A\nMelbourne, Victoria, Australia\n571\n\n===\
\ ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Adviser - Strategy\n\
\ 2021-11 - 2023-06\n N/A\n Te Manatū Waka - Ministry of Transport (New Zealand)\n\
\ ministry-of-transport-new-zealand\n Government Administration\n We are the\
\ government's principal transport advisor. \n 4964\n\nCompany Role #2:\n Internal\
\ Communications Coordinator\n 2020-07 - 2021-01\n N/A\n The Salvation Army\
\ Australia\n the-salvation-army-australia\n Non-profit Organizations\n N/A\n\
\ 29756\n\nCompany Role #3:\n Communications Business Adviser\n 2023-07 - N/A\n\
\ N/A\n City of Melbourne\n city-of-melbourne\n Government Administration\n\
\ Business, admin, cultural & recreational hub of Victoria, Australia. \n 145026\n\
\nCompany Role #4:\n Implementation Adviser - Business Operations\n 2021-01\
\ - 2021-11\n N/A\n Oranga Tamariki—Ministry for Children\n orangatamariki\n\
\ Government Administration\n Our vision is that New Zealand values the wellbeing\
\ of tamariki above all else.\n 20155\n\nCompany Role #5:\n SRS Consultant\n\
\ 2019-03 - 2020-05\n Working with qualified optometrists across Victoria, Western\
\ Australia and Tasmania, recruiting for both locum and permanent mobile optometry\
\ roles.<br>\n Specsavers\n specsavers\n Retail\n Join Specsavers\n 126070\n\
\n>>> SCHOOL ROLES <<<\n\nSchool Role #1:\n N/A\n 2014 - 2017\n N/A\n Victoria\
\ University of Wellington\n victoria-university-of-wellington\n N/A\n Te Herenga\
\ Waka—Victoria University of Wellington is New Zealand’s globally ranked capital\
\ city university.\n 119051\n\nSchool Role #2:\n N/A\n 2021-03 - 2021-08\n\
\ N/A\n Massey University\n massey-university\n N/A\n Show the world you\
\ have what it takes. Your journey begins with Massey in Auckland, Manawatū, Wellington\
\ or online.\n 150842"
- "=== PERSON ===\nMohamad Danou\nMohamad Danou is a graphic designer based in Blackburn,\
\ UK. I studied Graphic Design at The University of Salford. I love working on\
\ visual identity, branding projects, publication design, and bilingual projects.\n\
Blackburn, England, United Kingdom\n370\n\n=== ROLES ===\n>>> COMPANY ROLES <<<\n\
\nCompany Role #1:\n Founder\n 2021-06 - N/A\n N/A\n Tashkeel Design\n tashkeel-design\n\
\ Graphic Design\n Helping you to level up your brand.\n 2\n\n>>> SCHOOL ROLES\
\ <<<\n\nSchool Role #1:\n N/A\n 2017 - 2021\n N/A\n The University of Salford\n\
\ university-of-salford\n N/A\n N/A\n 165606"
- "=== PERSON ===\nJaap van der Jagt\nN/A\nTholen, Zeeland, Netherlands\n572\n\n\
=== ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Projectleider\n 1997-06\
\ - N/A\n N/A\n SelektHuis \n selekthuis\n Construction\n Wij zijn je ideale\
\ huizenbouwer. Met 6 vestigingen altijd in de buurt.\n#vrijstaandewoningbouw\
\ #nieuwbouw\n 2218\n\n>>> SCHOOL ROLES <<<\nNo school roles listed."
- source_sentence: Leader in environmental management and policy development
sentences:
- "=== PERSON ===\nDmitry Kolomiets\nResult oriented team member with proven ability\
\ to partner with leaders. Professional in Product Management, Wireless Technologies,\
\ Voice over IP (VOIP) and Account Management.\nUkraine\n797\n\n=== ROLES ===\n\
>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Key Account Manager\n 2020-01 -\
\ 2022-07\n N/A\n MMDSmart\n mmdsmart\n Telecommunications\n Smart communications\
\ solutions for enterprises of all sizes\n 7965\n\nCompany Role #2:\n Key Account\
\ Manager\n 2022-08 - N/A\n * Managing a portfolio of accounts to achieve long-term\
\ business relationship.<br>* Generating new sales using existing and potential\
\ client networks.<br>* Building and developing positive relationships and handling\
\ client’s needs by providing quality services.\n OXNP Group\n oxnptelecom\n\
\ IT Services and IT Consulting\n We turn customer dreams into superb IT products.\n\
\ 881\n\nCompany Role #3:\n Back Office Specialist\n 2019-12 - 2020-01\n N/A\n\
\ MMDSmart\n mmdsmart\n Telecommunications\n Smart communications solutions\
\ for enterprises of all sizes\n 7965\n\n>>> SCHOOL ROLES <<<\n\nSchool Role\
\ #1:\n N/A\n 2016 - 2020\n N/A\n Kyiv National Economics University\n kyiv-national-economics-university\n\
\ N/A\n N/A\n N/A"
- "=== PERSON ===\nQuba Fatima\nHi, I am Quba (ku·ba)<br><br>A self-taught UX Designer\
\ with detailed eye for Visuals and UI as well, passionate about improving businesses\
\ by improving their User Experience to help them better facilitate their users.<br><br>How\
\ do i do that?<br>Simple steps:<br>1: Know your users and be their voice.<br>2:\
\ Apply design laws/rules or best practices in order to solve the user problems.<br>3:\
\ Be hungry for feedback and act accordingly.\nPakistan\n2410\n\n=== ROLES ===\n\
>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Lead Product Designer\n 2020-04\
\ - N/A\n N/A\n Pixelied\n pixelied\n Software Development\n All-in-One Design\
\ Suite for Entrepreneurs & Businesses\n 363\n\nCompany Role #2:\n UI/UX Designer\n\
\ 2021-03 - 2022-03\n N/A\n Unlayer (YC W22)\n unlayer\n Software Development\n\
\ The simplest way to design mobile responsive emails and landing pages.\n 8313\n\
\nCompany Role #3:\n Web UI/UX Design Intern\n 2019-06 - 2019-09\n N/A\n Loops\
\ Digital\n loops-digital\n IT Services and IT Consulting\n Lets build and\
\ grow your product together! \n App development - Web Design - Digital Marketing.\
\ \n 1040\n\nCompany Role #4:\n Senior Product Designer\n 2022-03 - 2023-10\n\
\ Designing a no-code chatbot builder\n Turn.io\n turn-io\n IT Services and\
\ IT Consulting\n We help social impact organisations have personal, guided conversations\
\ that improve lives at scale. Join our Community!\n 3037\n\nCompany Role #5:\n\
\ Creative Head\n 2019-06 - 2021-03\n N/A\n Monty Media\n montymediadigital\n\
\ Advertising Services\n Turning information into actionable insights.\n 478\n\
\n>>> SCHOOL ROLES <<<\nNo school roles listed."
- "=== PERSON ===\nRonan Fonseca Fideles\n Profissional com sólida experiência\
\ na área de Controladoria, adquirida em grandes empresas multinacionais\
\ e nacionais dos segmentos de mineração, distribuição e construção. <br> \
\ Ampla vivência na condução das áreas de Planejamento, Controle Financeiro\
\ e Estratégico, Custos Industriais e Contabilidade Gerencial.<br> Facilidade\
\ para estabelecer bons relacionamentos e atuar como suporte de outras áreas do\
\ negócio, preparando e analisando informações de custos e oportunidades. \
\ Experiente no planejamento, controle e gestão de Budget, Forecast e todos os\
\ KPIs envolvidos.<br> Participação efetiva em projetos globais de implantação\
\ de sistemas ERP (SAP), ferramentas de gestão (BI), melhorias de processos\
\ e desenvolvimento de relatórios padronizados.<br> Vivência com estruturas\
\ matriciais, com reporte local, regional e internacional para a matriz.<br> \
\ As graduações em Administração de Empresas e Ciências Contábeis com\
\ CRC ativo, aliado a pós-graduação em Gestão de Negócios e fluência no\
\ inglês completam meu perfil. \nBelo Horizonte, Minas Gerais, Brazil\n1238\n\n\
=== ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Controller\n 2022-10\
\ - 2023-02\n N/A\n TRENG Consultoria e Tecnologia em Projetos\n trengengenharia\n\
\ Civil Engineering\n Engenharia e Tecnologia em projetos\n 1521\n\nCompany\
\ Role #2:\n Controller\n 2014-01 - 2021-03\n Reporte para Gerente Geral Financeiro.\
\ Gestão de uma equipe formada por seis profissionais.\nSuporte para todas as\
\ áreas (Diretores, Gerentes e Fábricas), com informações e análises para tomada\
\ de decisões.\nImplementação e gestão de todo o processo de Budget e Forecast\
\ da empresa e suas filiais.\n Gerenciava a apuração do resultado mensal da Companhia\
\ incluindo custos de produção, DRE e análises de variação, preparando os relatórios\
\ mensais sobre o desempenho econômico-financeiro.\n Criei e implementei planilha\
\ de Excel automatizada que aumentou a produtividade no processo de budget, uma\
\ vez que a mesma calculava o volume vendido, o balanço de produção, cálculo de\
\ custos e despesas, KPI e gerava o DRE (Demonstração de Resultado do Exercício).\n\
\ Geri os investimentos incluindo as solicitações e aplicação da política corporativa\
\ de CAPEX, processo de aprovação da diretoria, abertura de projetos no sistema\
\ ERP e acompanhamento dos gastos realizados versus orçados.\n Implementei processos\
\ de planejamento financeiro, KPIs e relatórios padronizados para operações na\
\ América Latina, facilitando a tomada de decisão das áreas de negócio com relatórios\
\ de indicadores financeiros e apresentações padronizadas.\n Elaborei e analisei\
\ estudos de viabilidade econômico-financeira dos projetos relacionados a abertura\
\ de novos negócios, expansão de negócios existentes ou oportunidades de ganhos.\n\
\ Identifiquei oportunidades de redução de despesas e custos por meio de desenvolvimento\
\ de ferramentas analíticas.\n Suportei a área comercial nos reajustes de preços\
\ de venda, análise de contratos com os clientes, analises de preços e margem\
\ de contribuição.\n Atuando em conjunto com unidades da empresa no mundo liderei\
\ o processo de padronização de informações no Brasil.\n Através da revisão de\
\ processos, reorganização de tarefas e desenvolvimento da equipe reduzi o prazo\
\ de apuração do resultado mensal em quatro dias úteis.\n Lhoist\n lhoist\n\
\ Mining\n Our lime and mineral-based products contribute to air and water quality,\
\ transport, agriculture, construction, and more.\n 72408\n\nCompany Role #3:\n\
\ Gerente de operações\n 2023-02 - N/A\n N/A\n BioclinTech\n bioclintech\n\
\ N/A\n A Bioclintech é a responsável pela Assessoria Técnica e \nCientifica\
\ aos equipamentos comercializados pela Bioclin.\n 186\n\nCompany Role #4:\n\
\ Consultor de gestão de negócios\n 2021-06 - 2022-10\n N/A\n Defumados Moretto\n\
\ defumadosmoretto\n N/A\n Desde 1988 produzindo o melhor defumado\n 23\n\n\
Company Role #5:\n Coordenador de controladoria\n 2011-06 - 2014-01\n Acompanhava\
\ o fechamento mensal de custos industriais, avaliando a exatidão dos cálculos\
\ apurados, a adequação dos critérios de rateio e observância dos procedimentos\
\ corporativos.\n Preparava análises sobre variações de custos e despesas reais\
\ versus orçados, que serviam de base para solicitar explicações das grandes variações\
\ junto às áreas responsáveis.\n Avaliava os controles de faturamentos de serviços\
\ e verificava a validação dos serviços realizados;\n Desenvolvi e implementei\
\ um comparativo de custos entre as unidades brasileiras, buscando as melhores\
\ práticas.\n Criei e conduzi reuniões entre as lideranças das unidades e diretores,\
\ buscando analisar os custos e propor melhorias e oportunidades para melhores\
\ resultados.\n Compartilhei o conhecimento e incentivei a utilização de ferramentas\
\ gerenciais de BI, para otimizar a preparação de relatórios e análises, que propiciava\
\ redução no tempo de preparação e melhoria de qualidade de informações.\n Lhoist\n\
\ lhoist\n Mining\n Our lime and mineral-based products contribute to air and\
\ water quality, transport, agriculture, construction, and more.\n 72408\n\n\
Company Role #6:\n Coordenador de controladoria\n 2011-03 - 2011-06\n Responsável\
\ pela criação e implantação da área de controladoria.\nCriei oportunidades \
\ para melhor interação entre as áreas da empresa, provocando discussões\
\ produtivas sobre variações de custos e oportunidades de melhoria.\n Precon\
\ Engenharia\n precon-engenharia\n Construction\n Mais que morar, viver.\n\
\ 67344\n\nCompany Role #7:\n Analista de controladoria\n 2006-09 - 2010-02\n\
\ Suporte de ao Diretor Industrial e ao Controller, gerando informações, análises\
\ e preparando informações.\n Confecção de Budget, Forecast, fechamento mensal\
\ da unidade analisando as informações de custos da fábrica.\n Lhoist\n lhoist\n\
\ Mining\n Our lime and mineral-based products contribute to air and water quality,\
\ transport, agriculture, construction, and more.\n 72408\n\nCompany Role #8:\n\
\ Coordenador de planejamento financeiro e controle\n 2010-02 - 2011-03\n Responsável\
\ pelo planejamento e controle de custos e orçamento das empresas, \
\ coordenando a implantação, elaboração, desenvolvimento e controle de ferramentas\
\ orçamentárias e de custos gerenciais.\n Confecção de Budget, Forecast, custos\
\ diretos e indiretos, apuração de custos para formação de preços de venda.\n\
\ Realizava o fechamento mensal analisando as informações de custo,\
\ despesas e receita, criando e gerando os relatórios gerenciais (DRE,\
\ Balancete, Fluxo de caixa, e outras informações gerenciais) para apresentação\
\ dos resultados à diretoria e conselho gestor.\n Criei e implantei administração\
\ de métodos de controle de custos para analisar, conferir e efetuar\
\ cálculos financeiros, que garantiam a acuracidade nas informações do balanço\
\ financeiro e elaboração de relatórios e análises para suporte à tomada de decisões\
\ estratégicas de gerentes e diretores.\n Analisava e controlava métodos, processos\
\ e sistemas localizando falhas, ineficiência e desperdícios.\n Controlava\
\ os estoques e auditava inventários físicos garantindo que os mesmos estivessem\
\ adequados.\n Globalbev Bebidas e Alimentos S/A\n globalbevsa\n Food and Beverage\
\ Services\n Energia Positiva, Parceria, Disciplina, Velocidade \U0001F499 \n\
\ 26945\n\n>>> SCHOOL ROLES <<<\nNo school roles listed."
- source_sentence: Managing Director at Citi Global Wealth
sentences:
- "=== PERSON ===\nFelipe de Jesús Degollado Robles\nFelipe de Jesús Degollado<br>Director\
\ General en DEA<br>República mexicana, México y extranjero o Ramo Asegurador<br><br>Actual\t\
\tDegollado Ajustadores, S.A. (DEA), Director General<br><br>Anterior\t \
\ Ajustes Calderón, Gerente Regional de Operaciones<br><br>Educación\t \
\ Escuela Bancaria Comercial, plantel Reforma, Ciudad de México, \
\ Instituto Mexicano de Seguros y Fianzas, A.C., plantel Coyoacán, Ciudad de\
\ México. <br><br>Extracto\t 25 años en el ramo Asegurador como, Administrador\
\ de Riesgos y Ajustador Profesional, con experiencia en Transportes, Agrícola\
\ y Semovientes, Diversos y Barcos, los últimos años como Ajustador Independiente\
\ y hoy, Director General de Degollado Ajustadores, S.A.\nBenito Juárez, Mexico\
\ City, Mexico\n166\n\n=== ROLES ===\n>>> COMPANY ROLES <<<\nNo company roles\
\ listed.\n\n>>> SCHOOL ROLES <<<\n\nSchool Role #1:\n N/A\n 2010 - 2013\n \
\ N/A\n Escuela Bancaria y Comercial\n escuela-bancaria-y-comercial\n N/A\n\
\ Más de 90 años, 13 campus, 8 Licenciaturas, 4 Licenciaturas Ejecutivas, 3 Posgrados,\
\ Diplomados y Cursos.\n 67704"
- "=== PERSON ===\nDave Molenda, TDC, TDFC, TEQC\npo·lar·i·ty (noun): The presence\
\ or manifestation of two opposite or contrasting principles or tendencies. In\
\ business, there are times we need a contrasting principle to help us see clearly,\
\ or get through some not so fun times. At Positive Polarity LLC, it's my job\
\ to help you navigate whatever waters you find yourself in...whether you need\
\ to strengthen your team, or improve your customers experience, I can use my\
\ 30 plus years of business knowledge to help as a business expert, problem solver,\
\ or a sales coach! Call me at 414 322 2358 or email me at [email protected]\
\ to see if there is something that I can help you with. The first consultation\
\ is always complimentary!\nGreater Milwaukee\n9005\n\n=== ROLES ===\n>>> COMPANY\
\ ROLES <<<\n\nCompany Role #1:\n President\n 2017-12 - 2018-12\n Leading the\
\ best Builders Association in the State of Wisconsin to new heights and accomplishing\
\ great things. Amazing members, solid board of directors and a great Executive\
\ Officer makes my job as President easier. We have a list of things to accomplish\
\ in 2018 and I am excited to continue the momentum!\n Lakeland Builders Association\n\
\ lakeland-builders-association\n Non-profit Organizations\n We're more than\
\ homes. We build communities.\n 158\n\nCompany Role #2:\n President/Owner\n\
\ 1986-05 - 2013-11\n Responsible for providing management and leadership to\
\ ensure individual inside and outside sales associates achieve set sales goals\
\ and budgets while adhering to company's overall objectives\nDesign, plan and\
\ execute sales and marketing programs to set and meet short- and long-term sales\
\ strategies and increase the company's sales volume\nEvaluate and recommend product\
\ or service enhancements to improve customer satisfaction and sales potential\n\
Ensure projects are completed on time and within budget\nAct as advisor, mentor\
\ and coach to sales team regarding projects, tasks, and operations\nDrive market\
\ share through developing and maintaining marketing programs, event support/sponsorships,\
\ advertising, special promotions, networking and contact management\nIdentify,\
\ develop and grow strategic alliances and customer relationships with builders,\
\ general contractors, remodelers, architects and engineers\nRecruit, train, develop,\
\ and motivate a team of sales associates through individual performance evaluations,\
\ regular sales reviews, weekly progress meetings and new selling techniques\n\
Provide and facilitate quarterly and annual strategic vision planning in order\
\ to develop sales and marketing objectives, manage budgets and position company\
\ for profitability\n Weather-Tek Windows & Doors\n weather-tek-design-center-inc-\n\
\ Construction\n Selection. Knowledge. Service.\n 168\n\nCompany Role #3:\n\
\ Founder, Business Coach, Leader, Trainer, DISC Certified Trainer\n 2012-08\
\ - N/A\n N/A\n Positive Polarity, LLC (Business Coaching, Training, Leadership\
\ Consulting, DISC certified, Speaker)\n positive-polarity-llc\n Professional\
\ Training and Coaching\n Creating Business Growth & Success - Contact me today\
\ to hear how I can help your business GROW! \n 733\n\nCompany Role #4:\n Author\
\ of #1 Amazon Best Selling Book - GROWING ON PURPOSE\n 2016-01 - N/A\n N/A\n\
\ Positive Polarity, LLC (Business Coaching, Training, Leadership Consulting,\
\ DISC certified, Speaker)\n positive-polarity-llc\n Professional Training and\
\ Coaching\n Creating Business Growth & Success - Contact me today to hear how\
\ I can help your business GROW! \n 733\n\nCompany Role #5:\n Keynote and Breakout\
\ Speaker\n 2012-08 - N/A\n N/A\n Positive Polarity, LLC (Business Coaching,\
\ Training, Leadership Consulting, DISC certified, Speaker)\n positive-polarity-llc\n\
\ Professional Training and Coaching\n Creating Business Growth & Success -\
\ Contact me today to hear how I can help your business GROW! \n 733\n\nCompany\
\ Role #6:\n Value Added Associate\n 2015-09 - N/A\n We are pleased to announce\
\ we have become Value Added Associates with the global leader in human behavior\
\ assessments, TTI Success Insights. Leveraging this valuable partnership for\
\ you, our clients and our contacts, Positive Polarity, LLC is now better able\
\ to provide tools to help you:\n\n1. Hire Better\n2. Develop Stronger\n3. Retain\
\ Longer\n\nFor more information, please email [email protected]\n Target\
\ Training International, Ltd.\n target-training-international\n Research Services\n\
\ N/A\n N/A\n\n>>> SCHOOL ROLES <<<\n\nSchool Role #1:\n N/A\n 1982 - 1984\n\
\ N/A\n University of Wisconsin-Milwaukee\n uwmilwaukee\n N/A\n N/A\n 180722\n\
\nSchool Role #2:\n Drafting\n 1990 - 1991\n MATC) Drafting, Blueprint Reading\n\
\ Milwaukee Area Technical College\n milwaukee-area-technical-college\n N/A\n\
\ Transforming Lives, Industry & Community\n 58339"
- "=== PERSON ===\nNeville Topping\nN/A\nWest Midlands, England, United Kingdom\n\
867\n\n=== ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Partner\n \
\ 1991 - N/A\n N/A\n Elias Topping\n elias-topping\n N/A\n N/A\n 22\n\n\
>>> SCHOOL ROLES <<<\nNo school roles listed."
- source_sentence: Experienced in SAP consultancy
sentences:
- "=== PERSON ===\nMärt Ehrenpreis\nN/A\nTallinn Metropolitan Area\n470\n\n=== ROLES\
\ ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Board Member CTO\n 2023-04\
\ - N/A\n N/A\n Elron / Eesti Liinirongid AS \n eestiliinirongid\n Truck Transportation\n\
\ Loome Sulle aega – viime Sind kohale kiiresti, turvaliselt ja mugavalt\n 414\n\
\nCompany Role #2:\n Managing Director, Proxion Plan Estonia OÜ\n 2021-01 -\
\ 2023-04\n N/A\n Proxion\n proxion-plan-oy\n Civil Engineering\n Proxion\
\ on osa WSP-yhtiöitä.\nOtathan seurantaan WSP in Finland -tilin!\n 2563\n\n\
>>> SCHOOL ROLES <<<\nNo school roles listed."
- "=== PERSON ===\nHarvindar Singh Garcha\nHarvindar's passion for technology can\
\ be traced back right from his childhood, Getting into the field of computer\
\ science bought him to have more focus on his goal. He is a fast learner and\
\ easily adapts to new skills. He always has the hunger and curiosity to learn\
\ new skills. <br><br>He has expertise in the design & development of RESTful\
\ APIs and back-end services utilizing Python ecosystem, Django, Flask, Docker,\
\ and SQL with an emphasis on scalability and security.<br><br>He is currently\
\ working as a full stack developer at AI Automotive company where he has worked\
\ on technologies Django, Flask, Python, RESTful APIs, React, Redux, Celery, and\
\ JavaScript, while keeping in mind all the secure code practices of OWASP top\
\ 10.<br><br>His specialties include quickly learning new skills, Programming\
\ languages, and Critical thinking in problem-solving.<br><br>In his free time,\
\ you will find him reading articles about the latest trending technologies on\
\ Internet, Spending some time on Quora & hiking on the mountains.\nPune, Maharashtra,\
\ India\n1294\n\n=== ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Software\
\ Development Analyst\n 2020-04 - 2020-08\n N/A\n Metta Social\n metta-social\n\
\ IT Services and IT Consulting\n Building world’s largest common good platform\
\ to enable sustainable impact at scale!\n 4002\n\nCompany Role #2:\n Junior\
\ Backend Engineer\n 2020-09 - 2021-03\n N/A\n SRV Media\n srv-media\n Advertising\
\ Services\n Insights | Ideas | Impact\n 49579\n\nCompany Role #3:\n Full Stack\
\ Developer\n 2021-03 - 2022-01\n N/A\n SRV Media\n srv-media\n Advertising\
\ Services\n Insights | Ideas | Impact\n 49579\n\nCompany Role #4:\n Software\
\ Development Intern\n 2019-10 - 2020-03\n Currently building a B2B social ecosystem\
\ platform where my daily work includes to develop and unit test REST API's using\
\ Flask and ORM using SQLAlchemy.<br><br>- Contributed 90% of the API's for mobile\
\ application which was build in just a month keeping in mind all the secure code\
\ practices of OWASP Top 10.<br><br>- Building REST API using Flask framework,\
\ for web app & checking the load balancing of concurrent users.<br> <br>-\
\ Building database model using SQL-Alchemy, and connecting it to Heroku.<br><br>-\
\ Security Testing of the API's !\n Metta Social\n metta-social\n IT Services\
\ and IT Consulting\n Building world’s largest common good platform to enable\
\ sustainable impact at scale!\n 4002\n\nCompany Role #5:\n Research And Development\
\ Engineer\n 2022-01 - N/A\n N/A\n Cerence Inc.\n cerence\n Software Development\n\
\ Cerence is the global industry leader in creating unique, moving experiences\
\ for the mobility world.\n 44039\n\n>>> SCHOOL ROLES <<<\nNo school roles listed."
- "=== PERSON ===\nNagwa Mahmoud\nSeeking to continue my work in a challenging work\
\ environment and a growing International organization, enhancing my business,\
\ IT and communication knowledge and skills, by adding value to myself and to\
\ the organization.\nEgypt\n260\n\n=== ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany\
\ Role #1:\n Senior Tour Consultant, Abercrombie & Kent, Egypt\n 2004-04 - 2004-09\n\
\ N/A\n A.P. Moller - Maersk\n maersk-group\n Truck Transportation\n N/A\n\
\ 1910055\n\nCompany Role #2:\n Assistant Division Manager, TOC\n 2014-10 -\
\ N/A\n *Primary role is to fully service the A&K branded business from A&K International\
\ Inc.<br>*Conducting annual planning sessions with the Tour Operating Companies\
\ (TOC’s) in order to agree on the following year’s brochure programs, pricing\
\ policy and detailed itineraries.<br>*Assist the Division manger in setting an\
\ annual revenue target in co-ordination with the TOC’s in preparation for submitting\
\ A&K Egypt’s annual revenue budget. <br>*Assist in applying a sales strategy\
\ which focuses on filling the Sanctuary Sun Boats space, as well as achieving\
\ highest possible margins, while remaining competitive enough to assist the TOC’s\
\ to maximize their sales potential and achieving annual margin targets.<br>*Assist\
\ in setting an annual pricing policy for the TOC’s in co-ordination with the\
\ Director, Tourism, and in accordance with the company’s pricing strategy, that\
\ would allow achievement of this margin.<br>*Preparing materialization and benchmarking\
\ reports for the department on a quarterly basis.<br>*Establishing and maintaining\
\ excellent professional and personal contacts with hotel key personnel and suppliers<br>*In\
\ addition to all duties and tasks mentioned below as a Tour Consultant.\n Abercrombie\
\ & Kent USA\n abercrombie-&-kent\n Travel Arrangements\n Abercrombie & Kent\
\ is the world’s premier luxury travel company with over 55 offices in more than\
\ 30 countries.\n 30147\n\nCompany Role #3:\n Tour Consultant\n 2003-07 - 2004-03\n\
\ N/A\n Abercrombie & Kent USA\n abercrombie-&-kent\n Travel Arrangements\n\
\ Abercrombie & Kent is the world’s premier luxury travel company with over 55\
\ offices in more than 30 countries.\n 30147\n\n>>> SCHOOL ROLES <<<\n\nSchool\
\ Role #1:\n N/A\n 2018 - 2019\n N/A\n The American University in Cairo\n\
\ aucegypt\n N/A\n Welcome to AUC, Egypt’s top University! Sharing our academic\
\ excellence, impactful research and various achievements.\n 355473\n\nSchool\
\ Role #2:\n N/A\n 1997 - 2001\n N/A\n Modern Academy Maadi\n modern-academy-maadi\n\
\ N/A\n N/A\n N/A\n\nSchool Role #3:\n N/A\n 2015 - 2016\n N/A\n AUC -\
\ School of Continuing Education\n school-of-continuing-education\n N/A\n Strive\
\ to offer high-quality education, that is affordable, flexible, accessible, and\
\ designed to enhance employability\n N/A"
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
model-index:
- name: SentenceTransformer based on jinaai/jina-embeddings-v2-small-en
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9527261266939805
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.27776145935058594
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8559485931748705
name: Cosine F1
- type: cosine_f1_threshold
value: 0.25389939546585083
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8474366893143916
name: Cosine Precision
- type: cosine_recall
value: 0.8646332240988153
name: Cosine Recall
- type: cosine_ap
value: 0.9213821667446777
name: Cosine Ap
- type: dot_accuracy
value: 0.9287109990545225
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 7.192317008972168
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7794543326969267
name: Dot F1
- type: dot_f1_threshold
value: 6.09993839263916
name: Dot F1 Threshold
- type: dot_precision
value: 0.7621341683728773
name: Dot Precision
- type: dot_recall
value: 0.797580035291152
name: Dot Recall
- type: dot_ap
value: 0.8651352639760566
name: Dot Ap
- type: manhattan_accuracy
value: 0.8422313268200441
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 69.50222778320312
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.39874017881332974
name: Manhattan F1
- type: manhattan_f1_threshold
value: 133.93528747558594
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.2726220246364731
name: Manhattan Precision
- type: manhattan_recall
value: 0.7419964708847996
name: Manhattan Recall
- type: manhattan_ap
value: 0.3696667018256091
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8424624435339847
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 3.8574271202087402
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.3998802952716633
name: Euclidean F1
- type: euclidean_f1_threshold
value: 7.491550445556641
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.2715898825654923
name: Euclidean Precision
- type: euclidean_recall
value: 0.7578774892866146
name: Euclidean Recall
- type: euclidean_ap
value: 0.3700396529324034
name: Euclidean Ap
- type: max_accuracy
value: 0.9527261266939805
name: Max Accuracy
- type: max_accuracy_threshold
value: 69.50222778320312
name: Max Accuracy Threshold
- type: max_f1
value: 0.8559485931748705
name: Max F1
- type: max_f1_threshold
value: 133.93528747558594
name: Max F1 Threshold
- type: max_precision
value: 0.8474366893143916
name: Max Precision
- type: max_recall
value: 0.8646332240988153
name: Max Recall
- type: max_ap
value: 0.9213821667446777
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: rec test evaluator
type: rec_test_evaluator
metrics:
- type: cosine_accuracy
value: 0.936855847189776
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.3141043186187744
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7994950557542605
name: Cosine F1
- type: cosine_f1_threshold
value: 0.2845936119556427
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8165019338203696
name: Cosine Precision
- type: cosine_recall
value: 0.7831821929101401
name: Cosine Recall
- type: cosine_ap
value: 0.8700199442144447
name: Cosine Ap
- type: dot_accuracy
value: 0.9174110210251477
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 4.781828880310059
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7457066004552038
name: Dot F1
- type: dot_f1_threshold
value: 4.365626335144043
name: Dot F1 Threshold
- type: dot_precision
value: 0.7486497714997923
name: Dot Precision
- type: dot_recall
value: 0.7427864798021434
name: Dot Recall
- type: dot_ap
value: 0.7954402853909471
name: Dot Ap
- type: manhattan_accuracy
value: 0.8618936374879758
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 69.56864929199219
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.5070320952037504
name: Manhattan F1
- type: manhattan_f1_threshold
value: 82.6656494140625
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.45064102564102565
name: Manhattan Precision
- type: manhattan_recall
value: 0.5795548227535037
name: Manhattan Recall
- type: manhattan_ap
value: 0.5479296779559962
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8626494434519719
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 3.860058546066284
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.5061946902654868
name: Euclidean F1
- type: euclidean_f1_threshold
value: 4.6146087646484375
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.4435483870967742
name: Euclidean Precision
- type: euclidean_recall
value: 0.5894476504534213
name: Euclidean Recall
- type: euclidean_ap
value: 0.5486506261661199
name: Euclidean Ap
- type: max_accuracy
value: 0.936855847189776
name: Max Accuracy
- type: max_accuracy_threshold
value: 69.56864929199219
name: Max Accuracy Threshold
- type: max_f1
value: 0.7994950557542605
name: Max F1
- type: max_f1_threshold
value: 82.6656494140625
name: Max F1 Threshold
- type: max_precision
value: 0.8165019338203696
name: Max Precision
- type: max_recall
value: 0.7831821929101401
name: Max Recall
- type: max_ap
value: 0.8700199442144447
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: query test evaluator
type: query_test_evaluator
metrics:
- type: cosine_accuracy
value: 0.9621682152477226
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.2630356252193451
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8849557522123893
name: Cosine F1
- type: cosine_f1_threshold
value: 0.25413358211517334
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8894186686227764
name: Cosine Precision
- type: cosine_recall
value: 0.8805374001452433
name: Cosine Recall
- type: cosine_ap
value: 0.947454791570092
name: Cosine Ap
- type: dot_accuracy
value: 0.948306649314488
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 8.425336837768555
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.843290979544021
name: Dot F1
- type: dot_f1_threshold
value: 7.547880172729492
name: Dot F1 Threshold
- type: dot_precision
value: 0.8371801753444266
name: Dot Precision
- type: dot_recall
value: 0.8494916485112564
name: Dot Recall
- type: dot_ap
value: 0.9205407446487603
name: Dot Ap
- type: manhattan_accuracy
value: 0.8801186404769832
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 116.77102661132812
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.5600226500566251
name: Manhattan F1
- type: manhattan_f1_threshold
value: 128.61376953125
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.5831367924528302
name: Manhattan Precision
- type: manhattan_recall
value: 0.5386710239651417
name: Manhattan Recall
- type: manhattan_ap
value: 0.6344397340133496
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8803607638993978
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 6.473782539367676
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.5613611007809595
name: Euclidean F1
- type: euclidean_f1_threshold
value: 7.165651798248291
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.575266768292683
name: Euclidean Precision
- type: euclidean_recall
value: 0.5481118373275236
name: Euclidean Recall
- type: euclidean_ap
value: 0.6368678358832146
name: Euclidean Ap
- type: max_accuracy
value: 0.9621682152477226
name: Max Accuracy
- type: max_accuracy_threshold
value: 116.77102661132812
name: Max Accuracy Threshold
- type: max_f1
value: 0.8849557522123893
name: Max F1
- type: max_f1_threshold
value: 128.61376953125
name: Max F1 Threshold
- type: max_precision
value: 0.8894186686227764
name: Max Precision
- type: max_recall
value: 0.8805374001452433
name: Max Recall
- type: max_ap
value: 0.947454791570092
name: Max Ap
---
# SentenceTransformer based on jinaai/jina-embeddings-v2-small-en
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-embeddings-v2-small-en](https://huggingface.co/jinaai/jina-embeddings-v2-small-en). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
https://wandb.ai/deklanw/sentence-transformers/runs/frjg0h13?nw=nwuserdeklanw
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [jinaai/jina-embeddings-v2-small-en](https://huggingface.co/jinaai/jina-embeddings-v2-small-en) <!-- at revision 44e7d1d6caec8c883c2d4b207588504d519788d0 -->
- **Maximum Sequence Length:** 2048 tokens
- **Output Dimensionality:** 512 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: JinaBertModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("borgcollectivegmbh/jina-embeddings-v2-small-en_linkedin_profile_model_run1")
# Run inference
sentences = [
'Experienced in SAP consultancy',
'=== PERSON ===\nMärt Ehrenpreis\nN/A\nTallinn Metropolitan Area\n470\n\n=== ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Board Member CTO\n 2023-04 - N/A\n N/A\n Elron / Eesti Liinirongid AS \n eestiliinirongid\n Truck Transportation\n Loome Sulle aega – viime Sind kohale kiiresti, turvaliselt ja mugavalt\n 414\n\nCompany Role #2:\n Managing Director, Proxion Plan Estonia OÜ\n 2021-01 - 2023-04\n N/A\n Proxion\n proxion-plan-oy\n Civil Engineering\n Proxion on osa WSP-yhtiöitä.\nOtathan seurantaan WSP in Finland -tilin!\n 2563\n\n>>> SCHOOL ROLES <<<\nNo school roles listed.',
"=== PERSON ===\nHarvindar Singh Garcha\nHarvindar's passion for technology can be traced back right from his childhood, Getting into the field of computer science bought him to have more focus on his goal. He is a fast learner and easily adapts to new skills. He always has the hunger and curiosity to learn new skills. <br><br>He has expertise in the design & development of RESTful APIs and back-end services utilizing Python ecosystem, Django, Flask, Docker, and SQL with an emphasis on scalability and security.<br><br>He is currently working as a full stack developer at AI Automotive company where he has worked on technologies Django, Flask, Python, RESTful APIs, React, Redux, Celery, and JavaScript, while keeping in mind all the secure code practices of OWASP top 10.<br><br>His specialties include quickly learning new skills, Programming languages, and Critical thinking in problem-solving.<br><br>In his free time, you will find him reading articles about the latest trending technologies on Internet, Spending some time on Quora & hiking on the mountains.\nPune, Maharashtra, India\n1294\n\n=== ROLES ===\n>>> COMPANY ROLES <<<\n\nCompany Role #1:\n Software Development Analyst\n 2020-04 - 2020-08\n N/A\n Metta Social\n metta-social\n IT Services and IT Consulting\n Building world’s largest common good platform to enable sustainable impact at scale!\n 4002\n\nCompany Role #2:\n Junior Backend Engineer\n 2020-09 - 2021-03\n N/A\n SRV Media\n srv-media\n Advertising Services\n Insights | Ideas | Impact\n 49579\n\nCompany Role #3:\n Full Stack Developer\n 2021-03 - 2022-01\n N/A\n SRV Media\n srv-media\n Advertising Services\n Insights | Ideas | Impact\n 49579\n\nCompany Role #4:\n Software Development Intern\n 2019-10 - 2020-03\n Currently building a B2B social ecosystem platform where my daily work includes to develop and unit test REST API's using Flask and ORM using SQLAlchemy.<br><br>- Contributed 90% of the API's for mobile application which was build in just a month keeping in mind all the secure code practices of OWASP Top 10.<br><br>- Building REST API using Flask framework, for web app & checking the load balancing of concurrent users.<br> <br>- Building database model using SQL-Alchemy, and connecting it to Heroku.<br><br>- Security Testing of the API's !\n Metta Social\n metta-social\n IT Services and IT Consulting\n Building world’s largest common good platform to enable sustainable impact at scale!\n 4002\n\nCompany Role #5:\n Research And Development Engineer\n 2022-01 - N/A\n N/A\n Cerence Inc.\n cerence\n Software Development\n Cerence is the global industry leader in creating unique, moving experiences for the mobility world.\n 44039\n\n>>> SCHOOL ROLES <<<\nNo school roles listed.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Datasets: ``, `rec_test_evaluator` and `query_test_evaluator`
* Evaluated with <code>custom_evaluator.BinaryClassificationEvaluator</code>
| Metric | | rec_test_evaluator | query_test_evaluator |
|:-----------------------------|:-----------|:-------------------|:---------------------|
| cosine_accuracy | 0.9527 | 0.9369 | 0.9622 |
| cosine_accuracy_threshold | 0.2778 | 0.3141 | 0.263 |
| cosine_f1 | 0.8559 | 0.7995 | 0.885 |
| cosine_f1_threshold | 0.2539 | 0.2846 | 0.2541 |
| cosine_precision | 0.8474 | 0.8165 | 0.8894 |
| cosine_recall | 0.8646 | 0.7832 | 0.8805 |
| cosine_ap | 0.9214 | 0.87 | 0.9475 |
| dot_accuracy | 0.9287 | 0.9174 | 0.9483 |
| dot_accuracy_threshold | 7.1923 | 4.7818 | 8.4253 |
| dot_f1 | 0.7795 | 0.7457 | 0.8433 |
| dot_f1_threshold | 6.0999 | 4.3656 | 7.5479 |
| dot_precision | 0.7621 | 0.7486 | 0.8372 |
| dot_recall | 0.7976 | 0.7428 | 0.8495 |
| dot_ap | 0.8651 | 0.7954 | 0.9205 |
| manhattan_accuracy | 0.8422 | 0.8619 | 0.8801 |
| manhattan_accuracy_threshold | 69.5022 | 69.5686 | 116.771 |
| manhattan_f1 | 0.3987 | 0.507 | 0.56 |
| manhattan_f1_threshold | 133.9353 | 82.6656 | 128.6138 |
| manhattan_precision | 0.2726 | 0.4506 | 0.5831 |
| manhattan_recall | 0.742 | 0.5796 | 0.5387 |
| manhattan_ap | 0.3697 | 0.5479 | 0.6344 |
| euclidean_accuracy | 0.8425 | 0.8626 | 0.8804 |
| euclidean_accuracy_threshold | 3.8574 | 3.8601 | 6.4738 |
| euclidean_f1 | 0.3999 | 0.5062 | 0.5614 |
| euclidean_f1_threshold | 7.4916 | 4.6146 | 7.1657 |
| euclidean_precision | 0.2716 | 0.4435 | 0.5753 |
| euclidean_recall | 0.7579 | 0.5894 | 0.5481 |
| euclidean_ap | 0.37 | 0.5487 | 0.6369 |
| max_accuracy | 0.9527 | 0.9369 | 0.9622 |
| max_accuracy_threshold | 69.5022 | 69.5686 | 116.771 |
| max_f1 | 0.8559 | 0.7995 | 0.885 |
| max_f1_threshold | 133.9353 | 82.6656 | 128.6138 |
| max_precision | 0.8474 | 0.8165 | 0.8894 |
| max_recall | 0.8646 | 0.7832 | 0.8805 |
| **max_ap** | **0.9214** | **0.87** | **0.9475** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 155,651 training samples
* Columns: <code>text1</code> and <code>text2</code>
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 |
|:--------|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 231.14 tokens</li><li>max: 2048 tokens</li></ul> | <ul><li>min: 51 tokens</li><li>mean: 618.32 tokens</li><li>max: 2048 tokens</li></ul> |
* Samples:
| text1 | text2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>=== PERSON ===<br>Dr. Amol Charegaonkar<br>Alumnus of IIM Indore (FDP-Executive Education)<br>Specialties: Data Analysis, Finance<br>Pune, Maharashtra, India<br>4511<br><br>=== ROLES ===<br>>>> COMPANY ROLES <<<<br><br>Company Role #1:<br> Principal Consultant<br> 2015-04 - 2021-06<br> N/A<br> Maruma Consultancy<br> maruma-consultancy<br> Human Resources Services<br> People Development Simplified<br> 218<br><br>Company Role #2:<br> Assistant Manager – Credit (Policy - Unsecured loans)<br> 2008-06 - 2009-01<br> Job Responsibilities: As a Team Member of the Credit Policy & Risk function<br>1.Analysis of Delinquent cases in Personal loans and Business Loans<br>2.Online analysis of cases booked under Personal and Business Loans <br>3.Auditing Pan India cases for credit underwriting w. r. t. Policy <br>4.Analyzing and publishing a Monthly Portfolio Review for Personal Loans from the Risk Perspective like Delinquency & Bounce Trend and Credit Appraisal Process <br>5.Incorporate the necessary changes required in the Lending Policy consid...</code> | <code>=== PERSON ===<br>Rajesh Baj<br>N/A<br>Hyderabad, Telangana, India<br>491<br><br>=== ROLES ===<br>>>> COMPANY ROLES <<<<br><br>Company Role #1:<br> Sr.Officer Finance and Accounts<br> 2010-10 - N/A<br> N/A<br> JK Agri Genetics Limited<br> jk-agri-genetics-limited<br> Biotechnology Research<br> Harvesting Happiness Through Innovations <br> 107873<br><br>Company Role #2:<br> Assistant Manager<br> 2013-10 - N/A<br> N/A<br> JK Agri Genetics Limited<br> jk-agri-genetics-limited<br> Biotechnology Research<br> Harvesting Happiness Through Innovations <br> 107873<br><br>Company Role #3:<br> Officer- Finance and Accounts<br> 2007-05 - 2007-07<br> Market Research in following Areas:-<br>1. Bandra-Kurla complex<br>2. Solitaire corporate Park Andheri<br>3. Udyog Bhavan, Garegaon<br> HSBC<br> hsbc<br> Financial Services<br> N/A<br> N/A<br><br>>>> SCHOOL ROLES <<<<br>No school roles listed.</code> |
| <code>=== PERSON ===<br>Gabriela Menezes<br>• Experiência em localização Brasil - TAXBRA, Nota Fiscal Eletrônica.<br>• Conhecimento em SAP Activate e ASAP.<br>• Experiência em suporte ao Cliente - AMS<br>São Paulo, São Paulo, Brazil<br>454<br><br>=== ROLES ===<br>>>> COMPANY ROLES <<<<br><br>Company Role #1:<br> Consultora SAP SD S/4HANA<br> 2023 - N/A<br> Atuação em - AMS <br>Analise e resolução de chamados dentro do SLA estabelecido.<br>Atuação nas diversas solicitações de melhoria.<br>Resolução de problemas relacionados a NF-e<br>Testes unitários e integrados<br>Configuração de impostos e leis fiscais.<br>Configuração de conta contábil.<br>Resolução de erros relacionados a Pricing.<br>Conhecimento e vivência no processo de Retorno Simbólico.<br>Apoio as frentes MM e FI<br>Apoio a equipe de projetos em configurações, testes unitários e integrados.<br> ITGCON Integração e Consultoria em Sistemas <br> itgcon<br> IT Services and IT Consulting<br> Mais que uma implementadora, somos a ITGCON consultoria.<br> 4116<br><br>Company Role #2:<br> Co...</code> | <code>=== PERSON ===<br>Rafael Menezes<br>Consultor funcional SD com experiência em AMS, formado em Tecnologia da Informação.<br>- Principais qualificações:<br>- Conhecimento em Localização Brasil, Pricing, Nota Fiscal Eletrônica e GRC.<br>- Conhecimento das principais tabelas do módulo SD.<br>- Conhecimento na configuração de impostos na J1BTAX<br>- Conhecimento no cadastro de dados mestres de clientes e<br>materiais.<br>São Paulo, Brazil<br>117<br><br>=== ROLES ===<br>>>> COMPANY ROLES <<<<br><br>Company Role #1:<br> Consultor SAP SD Pleno<br> 2023-05 - N/A<br> N/A<br> Capgemini<br> capgemini<br> IT Services and IT Consulting<br> Get the future you want<br> 6721701<br><br>Company Role #2:<br> Consultor Funcional SD JR/PL<br> 2021-12 - 2023-01<br> - Suporte ao cliente – AMS;<br>- Análise e resolução de chamados respeitando SLA;<br>- Testes em cenários de vendas;<br>- Configuração de impostos – J1BTAX;<br>- Resolução de erros referentes a rejeição de NF-e<br>- Resolução de erros referentes a CFOP<br>- Resolução de erros referentes a contas contábeis<br>- Criação de...</code> |
| <code>=== PERSON ===<br>Anastasia Hanan, M.S., M.B.A (she/her)<br>~10 years of user research in both startups and enterprise. I am a senior researcher passionate about leading research that grounds product vision in data and emotion, highlights the user voice along with immediate/long term project risks, and optimizes for radically collaborative tactical execution through ambiguous problem spaces. <br><br>Specialties: Complex systems research, moving between qualitative research to quantitative insights at scale, crypto, Qualtrics, innovation and strategy, process optimization, rapid insight, cross functional collaboration, making AI make sense, visual storytelling, presentations that win contests, get millions in funding, and/or create actionable product roadmaps.<br>United States<br>1101<br><br>=== ROLES ===<br>>>> COMPANY ROLES <<<<br><br>Company Role #1:<br> UX Researcher<br> 2022-11 - N/A<br> N/A<br> United States Digital Service<br> united-states-digital-service<br> Government Administration<br> We're mission-driven professio...</code> | <code>=== PERSON ===<br>Stephanie Kokotakis<br>N/A<br>Los Angeles, California, United States<br>325<br><br>=== ROLES ===<br>>>> COMPANY ROLES <<<<br>No company roles listed.<br><br>>>> SCHOOL ROLES <<<<br>No school roles listed.</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 47,595 evaluation samples
* Columns: <code>text1</code>, <code>text2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | text1 | text2 | label |
|:--------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 5 tokens</li><li>mean: 221.5 tokens</li><li>max: 2048 tokens</li></ul> | <ul><li>min: 50 tokens</li><li>mean: 605.95 tokens</li><li>max: 2048 tokens</li></ul> | <ul><li>0: ~82.40%</li><li>1: ~17.60%</li></ul> |
* Samples:
| text1 | text2 | label |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Nonprofit and association management expert</code> | <code>=== PERSON ===<br>Marius Strydom<br>Marius Strydom has spent 20 years producing innovative research on the SA financial services industry, with a specific focus on insurance. He was rated the top SA life assurance analyst twice and the top short-term insurance analyst 5 times while working at Investec and BJM. At Bank of America Merrill Lynch, Marius led the EEMEA Financial Sector Research team to a second place in the 2013 Institutional Investor survey. During 2013 and 2014, he worked on academic research, culminating in being published in the South African Actuarial Journal. Since 2015, as part of his work with MLAX Consulting, Marius analysed and produced bespoke research on numerous SA and UK financial companies. In 2020, Marius founded Austin Lawrence Gidon and together with global partner, Edison Investment Research, they are driving the sponsored research revolution in South Africa.<br>City of Cape Town, Western Cape, South Africa<br>1351<br><br>=== ROLES ===<br>>>> COMPANY ROLES <<<<br><br>Company Role #...</code> | <code>0</code> |
| <code>Expert in Alienware product support</code> | <code>=== PERSON ===<br>Ryan Talbot<br>With over 25 years of experience in physical security, Identity management, and video surveillance, Ryan is recognized as a leader in the design and implementation of major technology solutions.<br><br>Ryan has managed major security and IT system implementations for government, commercial, transport, data centres, gaming & casinos, retail, law enforcement and critical infrastructure environments. Ryan has worked closely with major technology brands in the design and development of hardware and software products throughout; Australia, Europe, North America and Asia.<br><br>A leader in advanced video solutions and a former committee member of the AS/NZS 62676:5 standards, an experienced project manager and is PRINCE2 certified. He has a certificate IV in security risk management and qualifications in security electronics and sports performance.<br><br>Ryan has also been involved in the development and design of many new technologies for IP cameras, customised ...</code> | <code>0</code> |
| <code>=== PERSON ===<br>Kevin Watson<br>Specialties: Parametric cost estimation,<br>WLC / LCC analysis, <br>Logistics and supportability modelling. <br>Economic LORA, <br>Spares modelling,<br><br>Tools / Applications: PRICE® TruePlanning®, EDCAS®, VMetric®<br>United Kingdom<br>389<br><br>=== ROLES ===<br>>>> COMPANY ROLES <<<<br><br>Company Role #1:<br> Senior Consultant<br> 2013-09 - N/A<br> N/A<br> QinetiQ<br> qinetiq_2<br> Defense and Space Manufacturing<br> Create It. Test It. Use It.<br> 122597<br><br>Company Role #2:<br> Support Modelling Team Lead<br> 2004-06 - 2011-02<br> N/A<br> General Dynamics UK Limited<br> general-dynamics-uk-limited<br> Defense and Space Manufacturing<br> General Dynamics UK is one of the UK’s leading defence companies and an important supplier to the UK Ministry of Defence<br> 29195<br><br>Company Role #3:<br> Estimation Specialist Senior Engineer<br> 2011-02 - 2013-09<br> N/A<br> General Dynamics UK Limited<br> general-dynamics-uk-limited<br> Defense and Space Manufacturing<br> General Dynamics UK is one of the UK’s leading defence com...</code> | <code>=== PERSON ===<br>Kyle Biron, M.S.<br>N/A<br>Raleigh-Durham-Chapel Hill Area<br>308<br><br>=== ROLES ===<br>>>> COMPANY ROLES <<<<br><br>Company Role #1:<br> Clinical Informatics Analyst Associate<br> 2017-05 - 2018-05<br> • Data analyst at the Grow Baby Grow biostatistics lab at Kennesaw State University <br>• Statistical programming and statistical modeling using the Pediatrix Medical Group, Inc. database of over 1.2 million infant records to solve medical problems<br>• Received acknowledgement in a Neonatology publication comparing BMI with other proportionality measurements<br>• En route to another publication comparing popular intrauterine preterm growth curves<br>• Supervisory experience by managing and collaborating with other biostatisticians<br> Kennesaw State University<br> kennesaw-state-university<br> N/A<br> We are KSU Owls. And together, we're ascending.<br> 167722<br><br>Company Role #2:<br> Health Data Analyst II<br> 2022-06 - N/A<br> N/A<br> Nuna Inc.<br> nuna-inc<br> IT Services and IT Consulting<br> Driven by Data, Guided by Com...</code> | <code>0</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | max_ap | rec_test_evaluator_max_ap | query_test_evaluator_max_ap |
|:----------:|:--------:|:-------------:|:---------------:|:------:|:-------------------------:|:---------------------------:|
| 0 | 0 | - | - | 0.4584 | 0.5698 | 0.7804 |
| 0.0051 | 50 | 1.9282 | - | - | - | - |
| 0.0103 | 100 | 1.754 | - | - | - | - |
| 0.0154 | 150 | 1.4681 | - | - | - | - |
| 0.0206 | 200 | 1.1736 | - | - | - | - |
| 0.0257 | 250 | 1.0527 | - | - | - | - |
| 0.0308 | 300 | 0.9073 | - | - | - | - |
| 0.0360 | 350 | 0.9088 | - | - | - | - |
| 0.0411 | 400 | 0.8556 | - | - | - | - |
| 0.0463 | 450 | 0.77 | - | - | - | - |
| 0.0514 | 500 | 0.7768 | - | - | - | - |
| 0.0565 | 550 | 0.5559 | - | - | - | - |
| 0.0617 | 600 | 0.7102 | - | - | - | - |
| 0.0668 | 650 | 0.6498 | - | - | - | - |
| 0.0719 | 700 | 0.699 | - | - | - | - |
| 0.0771 | 750 | 0.6628 | - | - | - | - |
| 0.0822 | 800 | 0.7298 | - | - | - | - |
| 0.0874 | 850 | 0.6278 | - | - | - | - |
| 0.0925 | 900 | 0.6033 | - | - | - | - |
| 0.0976 | 950 | 0.5783 | - | - | - | - |
| 0.1028 | 1000 | 0.6187 | - | - | - | - |
| 0.1079 | 1050 | 0.5712 | - | - | - | - |
| 0.1131 | 1100 | 0.6375 | - | - | - | - |
| 0.1182 | 1150 | 0.6028 | - | - | - | - |
| 0.1233 | 1200 | 0.6227 | - | - | - | - |
| 0.1285 | 1250 | 0.5955 | - | - | - | - |
| 0.1336 | 1300 | 0.6402 | - | - | - | - |
| 0.1388 | 1350 | 0.5982 | - | - | - | - |
| 0.1439 | 1400 | 0.6085 | - | - | - | - |
| 0.1490 | 1450 | 0.6163 | - | - | - | - |
| 0.1542 | 1500 | 0.6304 | - | - | - | - |
| 0.1593 | 1550 | 0.5499 | - | - | - | - |
| 0.1645 | 1600 | 0.5648 | - | - | - | - |
| 0.1696 | 1650 | 0.6121 | - | - | - | - |
| 0.1747 | 1700 | 0.5499 | - | - | - | - |
| 0.1799 | 1750 | 0.518 | - | - | - | - |
| 0.1850 | 1800 | 0.565 | - | - | - | - |
| 0.1902 | 1850 | 0.5966 | - | - | - | - |
| 0.1953 | 1900 | 0.559 | - | - | - | - |
| 0 | 0 | - | - | 0.9020 | - | - |
| 0.2000 | 1946 | - | 4.7301 | - | - | - |
| 0.2004 | 1950 | 0.6196 | - | - | - | - |
| 0.2056 | 2000 | 0.5304 | - | - | - | - |
| 0.2107 | 2050 | 0.5613 | - | - | - | - |
| 0.2158 | 2100 | 0.5716 | - | - | - | - |
| 0.2210 | 2150 | 0.5914 | - | - | - | - |
| 0.2261 | 2200 | 0.5692 | - | - | - | - |
| 0.2313 | 2250 | 0.5049 | - | - | - | - |
| 0.2364 | 2300 | 0.5064 | - | - | - | - |
| 0.2415 | 2350 | 0.5624 | - | - | - | - |
| 0.2467 | 2400 | 0.482 | - | - | - | - |
| 0.2518 | 2450 | 0.5529 | - | - | - | - |
| 0.2570 | 2500 | 0.5037 | - | - | - | - |
| 0.2621 | 2550 | 0.5702 | - | - | - | - |
| 0.2672 | 2600 | 0.5219 | - | - | - | - |
| 0.2724 | 2650 | 0.4623 | - | - | - | - |
| 0.2775 | 2700 | 0.5232 | - | - | - | - |
| 0.2827 | 2750 | 0.5867 | - | - | - | - |
| 0.2878 | 2800 | 0.5514 | - | - | - | - |
| 0.2929 | 2850 | 0.5288 | - | - | - | - |
| 0.2981 | 2900 | 0.5069 | - | - | - | - |
| 0.3032 | 2950 | 0.5761 | - | - | - | - |
| 0.3084 | 3000 | 0.525 | - | - | - | - |
| 0.3135 | 3050 | 0.5664 | - | - | - | - |
| 0.3186 | 3100 | 0.6317 | - | - | - | - |
| 0.3238 | 3150 | 0.5479 | - | - | - | - |
| 0.3289 | 3200 | 0.553 | - | - | - | - |
| 0.3341 | 3250 | 0.4752 | - | - | - | - |
| 0.3392 | 3300 | 0.5127 | - | - | - | - |
| 0.3443 | 3350 | 0.5699 | - | - | - | - |
| 0.3495 | 3400 | 0.5394 | - | - | - | - |
| 0.3546 | 3450 | 0.507 | - | - | - | - |
| 0.3597 | 3500 | 0.5938 | - | - | - | - |
| 0.3649 | 3550 | 0.539 | - | - | - | - |
| 0.3700 | 3600 | 0.525 | - | - | - | - |
| 0.3752 | 3650 | 0.4864 | - | - | - | - |
| 0.3803 | 3700 | 0.5308 | - | - | - | - |
| 0.3854 | 3750 | 0.4859 | - | - | - | - |
| 0.3906 | 3800 | 0.513 | - | - | - | - |
| 0.3957 | 3850 | 0.5332 | - | - | - | - |
| 0 | 0 | - | - | 0.9121 | - | - |
| 0.4000 | 3892 | - | 4.7785 | - | - | - |
| 0.4009 | 3900 | 0.474 | - | - | - | - |
| 0.4060 | 3950 | 0.458 | - | - | - | - |
| 0.4111 | 4000 | 0.5066 | - | - | - | - |
| 0.4163 | 4050 | 0.5217 | - | - | - | - |
| 0.4214 | 4100 | 0.5381 | - | - | - | - |
| 0.4266 | 4150 | 0.4994 | - | - | - | - |
| 0.4317 | 4200 | 0.508 | - | - | - | - |
| 0.4368 | 4250 | 0.4696 | - | - | - | - |
| 0.4420 | 4300 | 0.5563 | - | - | - | - |
| 0.4471 | 4350 | 0.4831 | - | - | - | - |
| 0.4523 | 4400 | 0.4532 | - | - | - | - |
| 0.4574 | 4450 | 0.5056 | - | - | - | - |
| 0.4625 | 4500 | 0.5409 | - | - | - | - |
| 0.4677 | 4550 | 0.5122 | - | - | - | - |
| 0.4728 | 4600 | 0.4593 | - | - | - | - |
| 0.4780 | 4650 | 0.5206 | - | - | - | - |
| 0.4831 | 4700 | 0.4803 | - | - | - | - |
| 0.4882 | 4750 | 0.478 | - | - | - | - |
| 0.4934 | 4800 | 0.5563 | - | - | - | - |
| 0.4985 | 4850 | 0.5191 | - | - | - | - |
| 0.5036 | 4900 | 0.4981 | - | - | - | - |
| 0.5088 | 4950 | 0.5075 | - | - | - | - |
| 0.5139 | 5000 | 0.5035 | - | - | - | - |
| 0.5191 | 5050 | 0.4375 | - | - | - | - |
| 0.5242 | 5100 | 0.515 | - | - | - | - |
| 0.5293 | 5150 | 0.4386 | - | - | - | - |
| 0.5345 | 5200 | 0.4757 | - | - | - | - |
| 0.5396 | 5250 | 0.4715 | - | - | - | - |
| 0.5448 | 5300 | 0.452 | - | - | - | - |
| 0.5499 | 5350 | 0.4789 | - | - | - | - |
| 0.5550 | 5400 | 0.4839 | - | - | - | - |
| 0.5602 | 5450 | 0.472 | - | - | - | - |
| 0.5653 | 5500 | 0.4779 | - | - | - | - |
| 0.5705 | 5550 | 0.4804 | - | - | - | - |
| 0.5756 | 5600 | 0.4778 | - | - | - | - |
| 0.5807 | 5650 | 0.4542 | - | - | - | - |
| 0.5859 | 5700 | 0.5099 | - | - | - | - |
| 0.5910 | 5750 | 0.5326 | - | - | - | - |
| 0.5962 | 5800 | 0.4859 | - | - | - | - |
| 0 | 0 | - | - | 0.9162 | - | - |
| 0.6001 | 5838 | - | 4.7525 | - | - | - |
| 0.6013 | 5850 | 0.4558 | - | - | - | - |
| 0.6064 | 5900 | 0.4429 | - | - | - | - |
| 0.6116 | 5950 | 0.4862 | - | - | - | - |
| 0.6167 | 6000 | 0.453 | - | - | - | - |
| 0.6219 | 6050 | 0.4795 | - | - | - | - |
| 0.6270 | 6100 | 0.4835 | - | - | - | - |
| 0.6321 | 6150 | 0.4517 | - | - | - | - |
| 0.6373 | 6200 | 0.4654 | - | - | - | - |
| 0.6424 | 6250 | 0.4076 | - | - | - | - |
| 0.6475 | 6300 | 0.4213 | - | - | - | - |
| 0.6527 | 6350 | 0.5258 | - | - | - | - |
| 0.6578 | 6400 | 0.4392 | - | - | - | - |
| 0.6630 | 6450 | 0.467 | - | - | - | - |
| 0.6681 | 6500 | 0.4382 | - | - | - | - |
| 0.6732 | 6550 | 0.4254 | - | - | - | - |
| 0.6784 | 6600 | 0.4647 | - | - | - | - |
| 0.6835 | 6650 | 0.4333 | - | - | - | - |
| 0.6887 | 6700 | 0.5067 | - | - | - | - |
| 0.6938 | 6750 | 0.4584 | - | - | - | - |
| 0.6989 | 6800 | 0.4843 | - | - | - | - |
| 0.7041 | 6850 | 0.441 | - | - | - | - |
| 0.7092 | 6900 | 0.4461 | - | - | - | - |
| 0.7144 | 6950 | 0.5262 | - | - | - | - |
| 0.7195 | 7000 | 0.463 | - | - | - | - |
| 0.7246 | 7050 | 0.4917 | - | - | - | - |
| 0.7298 | 7100 | 0.4288 | - | - | - | - |
| 0.7349 | 7150 | 0.4572 | - | - | - | - |
| 0.7401 | 7200 | 0.523 | - | - | - | - |
| 0.7452 | 7250 | 0.4868 | - | - | - | - |
| 0.7503 | 7300 | 0.4292 | - | - | - | - |
| 0.7555 | 7350 | 0.3998 | - | - | - | - |
| 0.7606 | 7400 | 0.4515 | - | - | - | - |
| 0.7658 | 7450 | 0.5028 | - | - | - | - |
| 0.7709 | 7500 | 0.4417 | - | - | - | - |
| 0.7760 | 7550 | 0.4908 | - | - | - | - |
| 0.7812 | 7600 | 0.4344 | - | - | - | - |
| 0.7863 | 7650 | 0.4956 | - | - | - | - |
| 0.7914 | 7700 | 0.3898 | - | - | - | - |
| 0.7966 | 7750 | 0.4512 | - | - | - | - |
| 0 | 0 | - | - | 0.9214 | - | - |
| **0.8001** | **7784** | **-** | **4.7145** | **-** | **-** | **-** |
| 0.8017 | 7800 | 0.5104 | - | - | - | - |
| 0.8069 | 7850 | 0.4543 | - | - | - | - |
| 0.8120 | 7900 | 0.4041 | - | - | - | - |
| 0.8171 | 7950 | 0.472 | - | - | - | - |
| 0.8223 | 8000 | 0.4535 | - | - | - | - |
| 0.8274 | 8050 | 0.4412 | - | - | - | - |
| 0.8326 | 8100 | 0.4776 | - | - | - | - |
| 0.8377 | 8150 | 0.3992 | - | - | - | - |
| 0.8428 | 8200 | 0.4332 | - | - | - | - |
| 0.8480 | 8250 | 0.4767 | - | - | - | - |
| 0.8531 | 8300 | 0.453 | - | - | - | - |
| 0.8583 | 8350 | 0.4321 | - | - | - | - |
| 0.8634 | 8400 | 0.4654 | - | - | - | - |
| 0.8685 | 8450 | 0.3688 | - | - | - | - |
| 0.8737 | 8500 | 0.4515 | - | - | - | - |
| 0.8788 | 8550 | 0.4693 | - | - | - | - |
| 0.8840 | 8600 | 0.404 | - | - | - | - |
| 0.8891 | 8650 | 0.5471 | - | - | - | - |
| 0.8942 | 8700 | 0.5301 | - | - | - | - |
| 0.8994 | 8750 | 0.4714 | - | - | - | - |
| 0.9045 | 8800 | 0.4863 | - | - | - | - |
| 0.9097 | 8850 | 0.4712 | - | - | - | - |
| 0.9148 | 8900 | 0.4446 | - | - | - | - |
| 0.9199 | 8950 | 0.41 | - | - | - | - |
| 0.9251 | 9000 | 0.4175 | - | - | - | - |
| 0.9302 | 9050 | 0.4678 | - | - | - | - |
| 0.9353 | 9100 | 0.4308 | - | - | - | - |
| 0.9405 | 9150 | 0.4532 | - | - | - | - |
| 0.9456 | 9200 | 0.4643 | - | - | - | - |
| 0.9508 | 9250 | 0.4197 | - | - | - | - |
| 0.9559 | 9300 | 0.4488 | - | - | - | - |
| 0.9610 | 9350 | 0.5365 | - | - | - | - |
| 0.9662 | 9400 | 0.475 | - | - | - | - |
| 0.9713 | 9450 | 0.438 | - | - | - | - |
| 0.9765 | 9500 | 0.3648 | - | - | - | - |
| 0.9816 | 9550 | 0.4277 | - | - | - | - |
| 0.9867 | 9600 | 0.4721 | - | - | - | - |
| 0.9919 | 9650 | 0.4603 | - | - | - | - |
| 0.9970 | 9700 | 0.3954 | - | - | - | - |
| 0 | 0 | - | - | 0.9214 | 0.8700 | 0.9475 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.4.1
- Transformers: 4.48.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |