bpavlsh commited on
Commit
ac5b12e
·
verified ·
1 Parent(s): 3d32153

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +52 -183
README.md CHANGED
@@ -1,209 +1,78 @@
1
  ---
2
  base_model: mistralai/Mistral-7B-Instruct-v0.1
3
  library_name: peft
4
- pipeline_tag: text-generation
5
  tags:
6
- - base_model:adapter:mistralai/Mistral-7B-Instruct-v0.1
7
- - lora
8
- - sft
9
- - transformers
10
- - trl
 
 
 
11
  ---
12
 
13
- # Model Card for Model ID
14
 
15
- <!-- Provide a quick summary of what the model is/does. -->
 
 
 
16
 
 
17
 
 
18
 
19
- ## Model Details
 
 
 
 
 
 
 
 
20
 
21
- ### Model Description
 
22
 
23
- <!-- Provide a longer summary of what this model is. -->
 
24
 
 
 
 
 
25
 
 
26
 
27
- - **Developed by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Model type:** [More Information Needed]
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** [More Information Needed]
33
- - **Finetuned from model [optional]:** [More Information Needed]
34
 
35
- ### Model Sources [optional]
36
 
37
- <!-- Provide the basic links for the model. -->
38
 
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
 
 
 
42
 
43
- ## Uses
44
 
45
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
 
47
- ### Direct Use
48
 
49
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
 
51
- [More Information Needed]
52
 
53
- ### Downstream Use [optional]
 
54
 
55
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
 
57
- [More Information Needed]
58
-
59
- ### Out-of-Scope Use
60
-
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
-
63
- [More Information Needed]
64
-
65
- ## Bias, Risks, and Limitations
66
-
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
-
69
- [More Information Needed]
70
-
71
- ### Recommendations
72
-
73
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
-
75
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
-
77
- ## How to Get Started with the Model
78
-
79
- Use the code below to get started with the model.
80
-
81
- [More Information Needed]
82
-
83
- ## Training Details
84
-
85
- ### Training Data
86
-
87
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
-
89
- [More Information Needed]
90
-
91
- ### Training Procedure
92
-
93
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
-
95
- #### Preprocessing [optional]
96
-
97
- [More Information Needed]
98
-
99
-
100
- #### Training Hyperparameters
101
-
102
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
-
104
- #### Speeds, Sizes, Times [optional]
105
-
106
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
-
108
- [More Information Needed]
109
-
110
- ## Evaluation
111
-
112
- <!-- This section describes the evaluation protocols and provides the results. -->
113
-
114
- ### Testing Data, Factors & Metrics
115
-
116
- #### Testing Data
117
-
118
- <!-- This should link to a Dataset Card if possible. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Factors
123
-
124
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
-
126
- [More Information Needed]
127
-
128
- #### Metrics
129
-
130
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
-
132
- [More Information Needed]
133
-
134
- ### Results
135
-
136
- [More Information Needed]
137
-
138
- #### Summary
139
-
140
-
141
-
142
- ## Model Examination [optional]
143
-
144
- <!-- Relevant interpretability work for the model goes here -->
145
-
146
- [More Information Needed]
147
-
148
- ## Environmental Impact
149
-
150
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
-
152
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
-
154
- - **Hardware Type:** [More Information Needed]
155
- - **Hours used:** [More Information Needed]
156
- - **Cloud Provider:** [More Information Needed]
157
- - **Compute Region:** [More Information Needed]
158
- - **Carbon Emitted:** [More Information Needed]
159
-
160
- ## Technical Specifications [optional]
161
-
162
- ### Model Architecture and Objective
163
-
164
- [More Information Needed]
165
-
166
- ### Compute Infrastructure
167
-
168
- [More Information Needed]
169
-
170
- #### Hardware
171
-
172
- [More Information Needed]
173
-
174
- #### Software
175
-
176
- [More Information Needed]
177
-
178
- ## Citation [optional]
179
-
180
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
-
182
- **BibTeX:**
183
-
184
- [More Information Needed]
185
-
186
- **APA:**
187
-
188
- [More Information Needed]
189
-
190
- ## Glossary [optional]
191
-
192
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
-
194
- [More Information Needed]
195
-
196
- ## More Information [optional]
197
-
198
- [More Information Needed]
199
-
200
- ## Model Card Authors [optional]
201
-
202
- [More Information Needed]
203
-
204
- ## Model Card Contact
205
-
206
- [More Information Needed]
207
- ### Framework versions
208
-
209
- - PEFT 0.17.0
 
1
  ---
2
  base_model: mistralai/Mistral-7B-Instruct-v0.1
3
  library_name: peft
 
4
  tags:
5
+ - crypto news
6
+ - news analytics
7
+ - graph summary
8
+ - sentiment signals
9
+ - RAG
10
+ - peft
11
+ - summarization
12
+ license: apache-2.0
13
  ---
14
 
15
+ ## Model Description
16
 
17
+ Fine-tuned Mistral-7B model for cryptocurrency news multilevel analytics (English language).
18
+ It was fine-tuned using Peft/LoRA approach with 4-Bit quantization. Given the news text, the model can generate graph
19
+ and text summaries with sentiment signals. Graph and text summaries and be summarized on the stacking level and graph and text summaries of summaries
20
+ can be stacked into one diversified summary. Using graph presentation can be improve trend estimation accuracy for cryptocurrencies and eliminate LLM halucinations.
21
 
22
+ ## How to Get Started with the Model
23
 
24
+ Fine-tuned model can be tested on Google Colab using Nvidia A100 or L4 GPU.
25
 
26
+ Pakages installation:
27
+ ```python
28
+ pip install transformers bitsandbytes peft
29
+ ```
30
+ Use the code below to get started with the model:
31
+ ```python
32
+ from transformers import AutoModelForCausalLM, AutoTokenizer
33
+ from peft import PeftModel
34
+ from huggingface_hub import login
35
 
36
+ #Login to Huggingface to load Mistral LLM
37
+ login("Huggingface access token")
38
 
39
+ model_id = "mistralai/Mistral-7B-Instruct-v0.1"
40
+ peft_model_name="bpavlsh/Mistral-crypto-news"
41
 
42
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
43
+ base_model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True,
44
+ device_map="auto", torch_dtype="auto")
45
+ model = PeftModel.from_pretrained(base_model, peft_model_name)
46
 
47
+ text=""" News text for analysis, from 1Kb to 10Kb """
48
 
49
+ prompt = f"""<s>[INST] <<SYS>>
50
+ You are an expert in analyzing news for fake content, propaganda, and offensive language.
51
+ <</SYS>>
 
 
 
 
52
 
53
+ Please analyze the following text: {text} [/INST]"""
54
 
 
55
 
56
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
57
+ output = model.generate(**inputs, max_new_tokens=1500)
58
+ output_result=tokenizer.decode(output[0], skip_special_tokens=True)
59
+ result=output_result.split('[/INST]')[1]
60
+ print(f"\n{result}")
61
+ ```
62
 
63
+ ## References
64
 
65
+ Pavlyshenko B.M. Analysis of Disinformation and Fake News Detection Using Fine-Tuned Large Language Model. arXiv preprint arXiv:2309.04704. 2023. Download PDF: https://arxiv.org/pdf/2309.04704.pdf
66
 
67
+ Pavlyshenko B.M. Financial News Analytics Using Fine-Tuned Llama 2 GPT Model. arXiv preprint arXiv:2308.13032. 2023. Download PDF: https://arxiv.org/pdf/2308.13032.pdf
68
 
69
+ Pavlyshenko B.M. AI Approaches to Qualitative and Quantitative News Analytics on NATO Unity. arXiv preprint arXiv:2505.06313. 2025. Download PDF: https://arxiv.org/pdf/2505.06313
70
 
71
+ ## Disclaimer
72
 
73
+ We are sharing a considered model and results for academic purpose only,
74
+ not any advice or recommendations.
75
 
76
+ ## Contacts
77
 
78
+ B. Pavlyshenko https://www.linkedin.com/in/bpavlyshenko