Update README.md
Browse files
README.md
CHANGED
@@ -1,209 +1,78 @@
|
|
1 |
---
|
2 |
base_model: mistralai/Mistral-7B-Instruct-v0.1
|
3 |
library_name: peft
|
4 |
-
pipeline_tag: text-generation
|
5 |
tags:
|
6 |
-
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
-
|
10 |
-
-
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
|
|
|
|
|
|
16 |
|
|
|
17 |
|
|
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
|
|
24 |
|
|
|
|
|
|
|
|
|
25 |
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
- **Model type:** [More Information Needed]
|
31 |
-
- **Language(s) (NLP):** [More Information Needed]
|
32 |
-
- **License:** [More Information Needed]
|
33 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
34 |
|
35 |
-
|
36 |
|
37 |
-
<!-- Provide the basic links for the model. -->
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
##
|
44 |
|
45 |
-
|
46 |
|
47 |
-
|
48 |
|
49 |
-
|
50 |
|
51 |
-
|
52 |
|
53 |
-
|
|
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
### Out-of-Scope Use
|
60 |
-
|
61 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
62 |
-
|
63 |
-
[More Information Needed]
|
64 |
-
|
65 |
-
## Bias, Risks, and Limitations
|
66 |
-
|
67 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
68 |
-
|
69 |
-
[More Information Needed]
|
70 |
-
|
71 |
-
### Recommendations
|
72 |
-
|
73 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
74 |
-
|
75 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
76 |
-
|
77 |
-
## How to Get Started with the Model
|
78 |
-
|
79 |
-
Use the code below to get started with the model.
|
80 |
-
|
81 |
-
[More Information Needed]
|
82 |
-
|
83 |
-
## Training Details
|
84 |
-
|
85 |
-
### Training Data
|
86 |
-
|
87 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
88 |
-
|
89 |
-
[More Information Needed]
|
90 |
-
|
91 |
-
### Training Procedure
|
92 |
-
|
93 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
94 |
-
|
95 |
-
#### Preprocessing [optional]
|
96 |
-
|
97 |
-
[More Information Needed]
|
98 |
-
|
99 |
-
|
100 |
-
#### Training Hyperparameters
|
101 |
-
|
102 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
103 |
-
|
104 |
-
#### Speeds, Sizes, Times [optional]
|
105 |
-
|
106 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
107 |
-
|
108 |
-
[More Information Needed]
|
109 |
-
|
110 |
-
## Evaluation
|
111 |
-
|
112 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
113 |
-
|
114 |
-
### Testing Data, Factors & Metrics
|
115 |
-
|
116 |
-
#### Testing Data
|
117 |
-
|
118 |
-
<!-- This should link to a Dataset Card if possible. -->
|
119 |
-
|
120 |
-
[More Information Needed]
|
121 |
-
|
122 |
-
#### Factors
|
123 |
-
|
124 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
125 |
-
|
126 |
-
[More Information Needed]
|
127 |
-
|
128 |
-
#### Metrics
|
129 |
-
|
130 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
131 |
-
|
132 |
-
[More Information Needed]
|
133 |
-
|
134 |
-
### Results
|
135 |
-
|
136 |
-
[More Information Needed]
|
137 |
-
|
138 |
-
#### Summary
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
## Model Examination [optional]
|
143 |
-
|
144 |
-
<!-- Relevant interpretability work for the model goes here -->
|
145 |
-
|
146 |
-
[More Information Needed]
|
147 |
-
|
148 |
-
## Environmental Impact
|
149 |
-
|
150 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
151 |
-
|
152 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
153 |
-
|
154 |
-
- **Hardware Type:** [More Information Needed]
|
155 |
-
- **Hours used:** [More Information Needed]
|
156 |
-
- **Cloud Provider:** [More Information Needed]
|
157 |
-
- **Compute Region:** [More Information Needed]
|
158 |
-
- **Carbon Emitted:** [More Information Needed]
|
159 |
-
|
160 |
-
## Technical Specifications [optional]
|
161 |
-
|
162 |
-
### Model Architecture and Objective
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
-
|
166 |
-
### Compute Infrastructure
|
167 |
-
|
168 |
-
[More Information Needed]
|
169 |
-
|
170 |
-
#### Hardware
|
171 |
-
|
172 |
-
[More Information Needed]
|
173 |
-
|
174 |
-
#### Software
|
175 |
-
|
176 |
-
[More Information Needed]
|
177 |
-
|
178 |
-
## Citation [optional]
|
179 |
-
|
180 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
181 |
-
|
182 |
-
**BibTeX:**
|
183 |
-
|
184 |
-
[More Information Needed]
|
185 |
-
|
186 |
-
**APA:**
|
187 |
-
|
188 |
-
[More Information Needed]
|
189 |
-
|
190 |
-
## Glossary [optional]
|
191 |
-
|
192 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
193 |
-
|
194 |
-
[More Information Needed]
|
195 |
-
|
196 |
-
## More Information [optional]
|
197 |
-
|
198 |
-
[More Information Needed]
|
199 |
-
|
200 |
-
## Model Card Authors [optional]
|
201 |
-
|
202 |
-
[More Information Needed]
|
203 |
-
|
204 |
-
## Model Card Contact
|
205 |
-
|
206 |
-
[More Information Needed]
|
207 |
-
### Framework versions
|
208 |
-
|
209 |
-
- PEFT 0.17.0
|
|
|
1 |
---
|
2 |
base_model: mistralai/Mistral-7B-Instruct-v0.1
|
3 |
library_name: peft
|
|
|
4 |
tags:
|
5 |
+
- crypto news
|
6 |
+
- news analytics
|
7 |
+
- graph summary
|
8 |
+
- sentiment signals
|
9 |
+
- RAG
|
10 |
+
- peft
|
11 |
+
- summarization
|
12 |
+
license: apache-2.0
|
13 |
---
|
14 |
|
15 |
+
## Model Description
|
16 |
|
17 |
+
Fine-tuned Mistral-7B model for cryptocurrency news multilevel analytics (English language).
|
18 |
+
It was fine-tuned using Peft/LoRA approach with 4-Bit quantization. Given the news text, the model can generate graph
|
19 |
+
and text summaries with sentiment signals. Graph and text summaries and be summarized on the stacking level and graph and text summaries of summaries
|
20 |
+
can be stacked into one diversified summary. Using graph presentation can be improve trend estimation accuracy for cryptocurrencies and eliminate LLM halucinations.
|
21 |
|
22 |
+
## How to Get Started with the Model
|
23 |
|
24 |
+
Fine-tuned model can be tested on Google Colab using Nvidia A100 or L4 GPU.
|
25 |
|
26 |
+
Pakages installation:
|
27 |
+
```python
|
28 |
+
pip install transformers bitsandbytes peft
|
29 |
+
```
|
30 |
+
Use the code below to get started with the model:
|
31 |
+
```python
|
32 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
33 |
+
from peft import PeftModel
|
34 |
+
from huggingface_hub import login
|
35 |
|
36 |
+
#Login to Huggingface to load Mistral LLM
|
37 |
+
login("Huggingface access token")
|
38 |
|
39 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
40 |
+
peft_model_name="bpavlsh/Mistral-crypto-news"
|
41 |
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
43 |
+
base_model = AutoModelForCausalLM.from_pretrained( model_id, load_in_4bit=True,
|
44 |
+
device_map="auto", torch_dtype="auto")
|
45 |
+
model = PeftModel.from_pretrained(base_model, peft_model_name)
|
46 |
|
47 |
+
text=""" News text for analysis, from 1Kb to 10Kb """
|
48 |
|
49 |
+
prompt = f"""<s>[INST] <<SYS>>
|
50 |
+
You are an expert in analyzing news for fake content, propaganda, and offensive language.
|
51 |
+
<</SYS>>
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
Please analyze the following text: {text} [/INST]"""
|
54 |
|
|
|
55 |
|
56 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
57 |
+
output = model.generate(**inputs, max_new_tokens=1500)
|
58 |
+
output_result=tokenizer.decode(output[0], skip_special_tokens=True)
|
59 |
+
result=output_result.split('[/INST]')[1]
|
60 |
+
print(f"\n{result}")
|
61 |
+
```
|
62 |
|
63 |
+
## References
|
64 |
|
65 |
+
Pavlyshenko B.M. Analysis of Disinformation and Fake News Detection Using Fine-Tuned Large Language Model. arXiv preprint arXiv:2309.04704. 2023. Download PDF: https://arxiv.org/pdf/2309.04704.pdf
|
66 |
|
67 |
+
Pavlyshenko B.M. Financial News Analytics Using Fine-Tuned Llama 2 GPT Model. arXiv preprint arXiv:2308.13032. 2023. Download PDF: https://arxiv.org/pdf/2308.13032.pdf
|
68 |
|
69 |
+
Pavlyshenko B.M. AI Approaches to Qualitative and Quantitative News Analytics on NATO Unity. arXiv preprint arXiv:2505.06313. 2025. Download PDF: https://arxiv.org/pdf/2505.06313
|
70 |
|
71 |
+
## Disclaimer
|
72 |
|
73 |
+
We are sharing a considered model and results for academic purpose only,
|
74 |
+
not any advice or recommendations.
|
75 |
|
76 |
+
## Contacts
|
77 |
|
78 |
+
B. Pavlyshenko https://www.linkedin.com/in/bpavlyshenko
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|