Update README.md
Browse files
README.md
CHANGED
@@ -1,20 +1,21 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
- zh
|
5 |
tags:
|
6 |
- fp8
|
7 |
-
-
|
8 |
-
- dynamic
|
9 |
-
- vision-language
|
10 |
-
- multimodal
|
11 |
- vllm
|
12 |
- llm-compressor
|
13 |
- internvl3.5
|
14 |
-
|
|
|
|
|
15 |
pipeline_tag: image-text-to-text
|
16 |
inference: false
|
17 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
18 |
---
|
19 |
|
20 |
# InternVL3.5 38B FP8
|
@@ -41,7 +42,22 @@ The quantization process uses a specialized recipe that preserves the model's co
|
|
41 |
| **Quantization Library** | [LLM Compressor](https://github.com/vllm-project/llm-compressor) v0.7.1 |
|
42 |
| **Quantized By** | [brandonbeiler](https://huggingface.co/brandonbeiler) |
|
43 |
|
44 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
The following snippet demonstrates inference using the vLLM library.
|
47 |
|
@@ -69,6 +85,8 @@ response = model.generate(prompt, sampling_params)
|
|
69 |
print(response[0].outputs[0].text)
|
70 |
```
|
71 |
|
|
|
|
|
72 |
## Technical Specifications
|
73 |
|
74 |
### Hardware Requirements
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- fp8
|
4 |
+
- fp8-dynamic
|
|
|
|
|
|
|
5 |
- vllm
|
6 |
- llm-compressor
|
7 |
- internvl3.5
|
8 |
+
- internvl
|
9 |
+
language:
|
10 |
+
- multilingual
|
11 |
pipeline_tag: image-text-to-text
|
12 |
inference: false
|
13 |
license: mit
|
14 |
+
base_model:
|
15 |
+
- OpenGVLab/InternVL3_5-38B
|
16 |
+
datasets:
|
17 |
+
- OpenGVLab/MMPR-v1.2
|
18 |
+
library_name: vllm
|
19 |
---
|
20 |
|
21 |
# InternVL3.5 38B FP8
|
|
|
42 |
| **Quantization Library** | [LLM Compressor](https://github.com/vllm-project/llm-compressor) v0.7.1 |
|
43 |
| **Quantized By** | [brandonbeiler](https://huggingface.co/brandonbeiler) |
|
44 |
|
45 |
+
## With vLLM OpenAI-Compatible Server
|
46 |
+
|
47 |
+
You can serve the model using vLLM's OpenAI-compatible API server.
|
48 |
+
|
49 |
+
```bash
|
50 |
+
python -m vllm.entrypoints.openai.api_server \
|
51 |
+
--model brandonbeiler/InternVL3_5-38B-FP8-Dynamic \
|
52 |
+
--quantization compressed-tensors \
|
53 |
+
--served-model-name internvl3_5-38b \
|
54 |
+
--reasoning-parser: qwen3 \
|
55 |
+
--trust-remote-code \
|
56 |
+
--max-model-len 32768 \
|
57 |
+
--tensor-parallel-size 1 # Adjust based on your GPU setup
|
58 |
+
```
|
59 |
+
|
60 |
+
## Usage with vLLM in Python
|
61 |
|
62 |
The following snippet demonstrates inference using the vLLM library.
|
63 |
|
|
|
85 |
print(response[0].outputs[0].text)
|
86 |
```
|
87 |
|
88 |
+
|
89 |
+
|
90 |
## Technical Specifications
|
91 |
|
92 |
### Hardware Requirements
|