Delete ip_adapter
Browse files- ip_adapter/attention_processor.py +0 -447
- ip_adapter/resampler.py +0 -121
- ip_adapter/utils.py +0 -5
ip_adapter/attention_processor.py
DELETED
@@ -1,447 +0,0 @@
|
|
1 |
-
# modified from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
|
6 |
-
try:
|
7 |
-
import xformers
|
8 |
-
import xformers.ops
|
9 |
-
xformers_available = True
|
10 |
-
except Exception as e:
|
11 |
-
xformers_available = False
|
12 |
-
|
13 |
-
class RegionControler(object):
|
14 |
-
def __init__(self) -> None:
|
15 |
-
self.prompt_image_conditioning = []
|
16 |
-
region_control = RegionControler()
|
17 |
-
|
18 |
-
class AttnProcessor(nn.Module):
|
19 |
-
r"""
|
20 |
-
Default processor for performing attention-related computations.
|
21 |
-
"""
|
22 |
-
def __init__(
|
23 |
-
self,
|
24 |
-
hidden_size=None,
|
25 |
-
cross_attention_dim=None,
|
26 |
-
):
|
27 |
-
super().__init__()
|
28 |
-
|
29 |
-
def forward(
|
30 |
-
self,
|
31 |
-
attn,
|
32 |
-
hidden_states,
|
33 |
-
encoder_hidden_states=None,
|
34 |
-
attention_mask=None,
|
35 |
-
temb=None,
|
36 |
-
):
|
37 |
-
residual = hidden_states
|
38 |
-
|
39 |
-
if attn.spatial_norm is not None:
|
40 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
41 |
-
|
42 |
-
input_ndim = hidden_states.ndim
|
43 |
-
|
44 |
-
if input_ndim == 4:
|
45 |
-
batch_size, channel, height, width = hidden_states.shape
|
46 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
47 |
-
|
48 |
-
batch_size, sequence_length, _ = (
|
49 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
50 |
-
)
|
51 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
52 |
-
|
53 |
-
if attn.group_norm is not None:
|
54 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
55 |
-
|
56 |
-
query = attn.to_q(hidden_states)
|
57 |
-
|
58 |
-
if encoder_hidden_states is None:
|
59 |
-
encoder_hidden_states = hidden_states
|
60 |
-
elif attn.norm_cross:
|
61 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
62 |
-
|
63 |
-
key = attn.to_k(encoder_hidden_states)
|
64 |
-
value = attn.to_v(encoder_hidden_states)
|
65 |
-
|
66 |
-
query = attn.head_to_batch_dim(query)
|
67 |
-
key = attn.head_to_batch_dim(key)
|
68 |
-
value = attn.head_to_batch_dim(value)
|
69 |
-
|
70 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
71 |
-
hidden_states = torch.bmm(attention_probs, value)
|
72 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
73 |
-
|
74 |
-
# linear proj
|
75 |
-
hidden_states = attn.to_out[0](hidden_states)
|
76 |
-
# dropout
|
77 |
-
hidden_states = attn.to_out[1](hidden_states)
|
78 |
-
|
79 |
-
if input_ndim == 4:
|
80 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
81 |
-
|
82 |
-
if attn.residual_connection:
|
83 |
-
hidden_states = hidden_states + residual
|
84 |
-
|
85 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
86 |
-
|
87 |
-
return hidden_states
|
88 |
-
|
89 |
-
|
90 |
-
class IPAttnProcessor(nn.Module):
|
91 |
-
r"""
|
92 |
-
Attention processor for IP-Adapater.
|
93 |
-
Args:
|
94 |
-
hidden_size (`int`):
|
95 |
-
The hidden size of the attention layer.
|
96 |
-
cross_attention_dim (`int`):
|
97 |
-
The number of channels in the `encoder_hidden_states`.
|
98 |
-
scale (`float`, defaults to 1.0):
|
99 |
-
the weight scale of image prompt.
|
100 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
101 |
-
The context length of the image features.
|
102 |
-
"""
|
103 |
-
|
104 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
105 |
-
super().__init__()
|
106 |
-
|
107 |
-
self.hidden_size = hidden_size
|
108 |
-
self.cross_attention_dim = cross_attention_dim
|
109 |
-
self.scale = scale
|
110 |
-
self.num_tokens = num_tokens
|
111 |
-
|
112 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
113 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
114 |
-
|
115 |
-
def forward(
|
116 |
-
self,
|
117 |
-
attn,
|
118 |
-
hidden_states,
|
119 |
-
encoder_hidden_states=None,
|
120 |
-
attention_mask=None,
|
121 |
-
temb=None,
|
122 |
-
):
|
123 |
-
residual = hidden_states
|
124 |
-
|
125 |
-
if attn.spatial_norm is not None:
|
126 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
127 |
-
|
128 |
-
input_ndim = hidden_states.ndim
|
129 |
-
|
130 |
-
if input_ndim == 4:
|
131 |
-
batch_size, channel, height, width = hidden_states.shape
|
132 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
133 |
-
|
134 |
-
batch_size, sequence_length, _ = (
|
135 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
136 |
-
)
|
137 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
138 |
-
|
139 |
-
if attn.group_norm is not None:
|
140 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
141 |
-
|
142 |
-
query = attn.to_q(hidden_states)
|
143 |
-
|
144 |
-
if encoder_hidden_states is None:
|
145 |
-
encoder_hidden_states = hidden_states
|
146 |
-
else:
|
147 |
-
# get encoder_hidden_states, ip_hidden_states
|
148 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
149 |
-
encoder_hidden_states, ip_hidden_states = encoder_hidden_states[:, :end_pos, :], encoder_hidden_states[:, end_pos:, :]
|
150 |
-
if attn.norm_cross:
|
151 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
152 |
-
|
153 |
-
key = attn.to_k(encoder_hidden_states)
|
154 |
-
value = attn.to_v(encoder_hidden_states)
|
155 |
-
|
156 |
-
query = attn.head_to_batch_dim(query)
|
157 |
-
key = attn.head_to_batch_dim(key)
|
158 |
-
value = attn.head_to_batch_dim(value)
|
159 |
-
|
160 |
-
if xformers_available:
|
161 |
-
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
162 |
-
else:
|
163 |
-
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
164 |
-
hidden_states = torch.bmm(attention_probs, value)
|
165 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
166 |
-
|
167 |
-
# for ip-adapter
|
168 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
169 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
170 |
-
|
171 |
-
ip_key = attn.head_to_batch_dim(ip_key)
|
172 |
-
ip_value = attn.head_to_batch_dim(ip_value)
|
173 |
-
|
174 |
-
if xformers_available:
|
175 |
-
ip_hidden_states = self._memory_efficient_attention_xformers(query, ip_key, ip_value, None)
|
176 |
-
else:
|
177 |
-
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
|
178 |
-
ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
|
179 |
-
ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states)
|
180 |
-
|
181 |
-
# region control
|
182 |
-
if len(region_control.prompt_image_conditioning) == 1:
|
183 |
-
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
184 |
-
if region_mask is not None:
|
185 |
-
h, w = region_mask.shape[:2]
|
186 |
-
ratio = (h * w / query.shape[1]) ** 0.5
|
187 |
-
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
188 |
-
else:
|
189 |
-
mask = torch.ones_like(ip_hidden_states)
|
190 |
-
ip_hidden_states = ip_hidden_states * mask
|
191 |
-
|
192 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
193 |
-
|
194 |
-
# linear proj
|
195 |
-
hidden_states = attn.to_out[0](hidden_states)
|
196 |
-
# dropout
|
197 |
-
hidden_states = attn.to_out[1](hidden_states)
|
198 |
-
|
199 |
-
if input_ndim == 4:
|
200 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
201 |
-
|
202 |
-
if attn.residual_connection:
|
203 |
-
hidden_states = hidden_states + residual
|
204 |
-
|
205 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
206 |
-
|
207 |
-
return hidden_states
|
208 |
-
|
209 |
-
|
210 |
-
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask):
|
211 |
-
# TODO attention_mask
|
212 |
-
query = query.contiguous()
|
213 |
-
key = key.contiguous()
|
214 |
-
value = value.contiguous()
|
215 |
-
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
216 |
-
# hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
217 |
-
return hidden_states
|
218 |
-
|
219 |
-
|
220 |
-
class AttnProcessor2_0(torch.nn.Module):
|
221 |
-
r"""
|
222 |
-
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
223 |
-
"""
|
224 |
-
def __init__(
|
225 |
-
self,
|
226 |
-
hidden_size=None,
|
227 |
-
cross_attention_dim=None,
|
228 |
-
):
|
229 |
-
super().__init__()
|
230 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
231 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
232 |
-
|
233 |
-
def forward(
|
234 |
-
self,
|
235 |
-
attn,
|
236 |
-
hidden_states,
|
237 |
-
encoder_hidden_states=None,
|
238 |
-
attention_mask=None,
|
239 |
-
temb=None,
|
240 |
-
):
|
241 |
-
residual = hidden_states
|
242 |
-
|
243 |
-
if attn.spatial_norm is not None:
|
244 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
245 |
-
|
246 |
-
input_ndim = hidden_states.ndim
|
247 |
-
|
248 |
-
if input_ndim == 4:
|
249 |
-
batch_size, channel, height, width = hidden_states.shape
|
250 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
251 |
-
|
252 |
-
batch_size, sequence_length, _ = (
|
253 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
254 |
-
)
|
255 |
-
|
256 |
-
if attention_mask is not None:
|
257 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
258 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
259 |
-
# (batch, heads, source_length, target_length)
|
260 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
261 |
-
|
262 |
-
if attn.group_norm is not None:
|
263 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
264 |
-
|
265 |
-
query = attn.to_q(hidden_states)
|
266 |
-
|
267 |
-
if encoder_hidden_states is None:
|
268 |
-
encoder_hidden_states = hidden_states
|
269 |
-
elif attn.norm_cross:
|
270 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
271 |
-
|
272 |
-
key = attn.to_k(encoder_hidden_states)
|
273 |
-
value = attn.to_v(encoder_hidden_states)
|
274 |
-
|
275 |
-
inner_dim = key.shape[-1]
|
276 |
-
head_dim = inner_dim // attn.heads
|
277 |
-
|
278 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
279 |
-
|
280 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
281 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
282 |
-
|
283 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
284 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
285 |
-
hidden_states = F.scaled_dot_product_attention(
|
286 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
287 |
-
)
|
288 |
-
|
289 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
290 |
-
hidden_states = hidden_states.to(query.dtype)
|
291 |
-
|
292 |
-
# linear proj
|
293 |
-
hidden_states = attn.to_out[0](hidden_states)
|
294 |
-
# dropout
|
295 |
-
hidden_states = attn.to_out[1](hidden_states)
|
296 |
-
|
297 |
-
if input_ndim == 4:
|
298 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
299 |
-
|
300 |
-
if attn.residual_connection:
|
301 |
-
hidden_states = hidden_states + residual
|
302 |
-
|
303 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
304 |
-
|
305 |
-
return hidden_states
|
306 |
-
|
307 |
-
class IPAttnProcessor2_0(torch.nn.Module):
|
308 |
-
r"""
|
309 |
-
Attention processor for IP-Adapater for PyTorch 2.0.
|
310 |
-
Args:
|
311 |
-
hidden_size (`int`):
|
312 |
-
The hidden size of the attention layer.
|
313 |
-
cross_attention_dim (`int`):
|
314 |
-
The number of channels in the `encoder_hidden_states`.
|
315 |
-
scale (`float`, defaults to 1.0):
|
316 |
-
the weight scale of image prompt.
|
317 |
-
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
|
318 |
-
The context length of the image features.
|
319 |
-
"""
|
320 |
-
|
321 |
-
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4):
|
322 |
-
super().__init__()
|
323 |
-
|
324 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
325 |
-
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
326 |
-
|
327 |
-
self.hidden_size = hidden_size
|
328 |
-
self.cross_attention_dim = cross_attention_dim
|
329 |
-
self.scale = scale
|
330 |
-
self.num_tokens = num_tokens
|
331 |
-
|
332 |
-
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
333 |
-
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
334 |
-
|
335 |
-
def forward(
|
336 |
-
self,
|
337 |
-
attn,
|
338 |
-
hidden_states,
|
339 |
-
encoder_hidden_states=None,
|
340 |
-
attention_mask=None,
|
341 |
-
temb=None,
|
342 |
-
):
|
343 |
-
residual = hidden_states
|
344 |
-
|
345 |
-
if attn.spatial_norm is not None:
|
346 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
347 |
-
|
348 |
-
input_ndim = hidden_states.ndim
|
349 |
-
|
350 |
-
if input_ndim == 4:
|
351 |
-
batch_size, channel, height, width = hidden_states.shape
|
352 |
-
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
353 |
-
|
354 |
-
batch_size, sequence_length, _ = (
|
355 |
-
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
356 |
-
)
|
357 |
-
|
358 |
-
if attention_mask is not None:
|
359 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
360 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
361 |
-
# (batch, heads, source_length, target_length)
|
362 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
363 |
-
|
364 |
-
if attn.group_norm is not None:
|
365 |
-
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
366 |
-
|
367 |
-
query = attn.to_q(hidden_states)
|
368 |
-
|
369 |
-
if encoder_hidden_states is None:
|
370 |
-
encoder_hidden_states = hidden_states
|
371 |
-
else:
|
372 |
-
# get encoder_hidden_states, ip_hidden_states
|
373 |
-
end_pos = encoder_hidden_states.shape[1] - self.num_tokens
|
374 |
-
encoder_hidden_states, ip_hidden_states = (
|
375 |
-
encoder_hidden_states[:, :end_pos, :],
|
376 |
-
encoder_hidden_states[:, end_pos:, :],
|
377 |
-
)
|
378 |
-
if attn.norm_cross:
|
379 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
380 |
-
|
381 |
-
key = attn.to_k(encoder_hidden_states)
|
382 |
-
value = attn.to_v(encoder_hidden_states)
|
383 |
-
|
384 |
-
inner_dim = key.shape[-1]
|
385 |
-
head_dim = inner_dim // attn.heads
|
386 |
-
|
387 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
388 |
-
|
389 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
390 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
391 |
-
|
392 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
393 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
394 |
-
hidden_states = F.scaled_dot_product_attention(
|
395 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
396 |
-
)
|
397 |
-
|
398 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
399 |
-
hidden_states = hidden_states.to(query.dtype)
|
400 |
-
|
401 |
-
# for ip-adapter
|
402 |
-
ip_key = self.to_k_ip(ip_hidden_states)
|
403 |
-
ip_value = self.to_v_ip(ip_hidden_states)
|
404 |
-
|
405 |
-
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
406 |
-
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
407 |
-
|
408 |
-
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
409 |
-
# TODO: add support for attn.scale when we move to Torch 2.1
|
410 |
-
ip_hidden_states = F.scaled_dot_product_attention(
|
411 |
-
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
412 |
-
)
|
413 |
-
with torch.no_grad():
|
414 |
-
self.attn_map = query @ ip_key.transpose(-2, -1).softmax(dim=-1)
|
415 |
-
#print(self.attn_map.shape)
|
416 |
-
|
417 |
-
ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
418 |
-
ip_hidden_states = ip_hidden_states.to(query.dtype)
|
419 |
-
|
420 |
-
# region control
|
421 |
-
if len(region_control.prompt_image_conditioning) == 1:
|
422 |
-
region_mask = region_control.prompt_image_conditioning[0].get('region_mask', None)
|
423 |
-
if region_mask is not None:
|
424 |
-
query = query.reshape([-1, query.shape[-2], query.shape[-1]])
|
425 |
-
h, w = region_mask.shape[:2]
|
426 |
-
ratio = (h * w / query.shape[1]) ** 0.5
|
427 |
-
mask = F.interpolate(region_mask[None, None], scale_factor=1/ratio, mode='nearest').reshape([1, -1, 1])
|
428 |
-
else:
|
429 |
-
mask = torch.ones_like(ip_hidden_states)
|
430 |
-
ip_hidden_states = ip_hidden_states * mask
|
431 |
-
|
432 |
-
hidden_states = hidden_states + self.scale * ip_hidden_states
|
433 |
-
|
434 |
-
# linear proj
|
435 |
-
hidden_states = attn.to_out[0](hidden_states)
|
436 |
-
# dropout
|
437 |
-
hidden_states = attn.to_out[1](hidden_states)
|
438 |
-
|
439 |
-
if input_ndim == 4:
|
440 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
441 |
-
|
442 |
-
if attn.residual_connection:
|
443 |
-
hidden_states = hidden_states + residual
|
444 |
-
|
445 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
446 |
-
|
447 |
-
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/resampler.py
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
# modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
|
2 |
-
import math
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
|
7 |
-
|
8 |
-
# FFN
|
9 |
-
def FeedForward(dim, mult=4):
|
10 |
-
inner_dim = int(dim * mult)
|
11 |
-
return nn.Sequential(
|
12 |
-
nn.LayerNorm(dim),
|
13 |
-
nn.Linear(dim, inner_dim, bias=False),
|
14 |
-
nn.GELU(),
|
15 |
-
nn.Linear(inner_dim, dim, bias=False),
|
16 |
-
)
|
17 |
-
|
18 |
-
|
19 |
-
def reshape_tensor(x, heads):
|
20 |
-
bs, length, width = x.shape
|
21 |
-
#(bs, length, width) --> (bs, length, n_heads, dim_per_head)
|
22 |
-
x = x.view(bs, length, heads, -1)
|
23 |
-
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
|
24 |
-
x = x.transpose(1, 2)
|
25 |
-
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
|
26 |
-
x = x.reshape(bs, heads, length, -1)
|
27 |
-
return x
|
28 |
-
|
29 |
-
|
30 |
-
class PerceiverAttention(nn.Module):
|
31 |
-
def __init__(self, *, dim, dim_head=64, heads=8):
|
32 |
-
super().__init__()
|
33 |
-
self.scale = dim_head**-0.5
|
34 |
-
self.dim_head = dim_head
|
35 |
-
self.heads = heads
|
36 |
-
inner_dim = dim_head * heads
|
37 |
-
|
38 |
-
self.norm1 = nn.LayerNorm(dim)
|
39 |
-
self.norm2 = nn.LayerNorm(dim)
|
40 |
-
|
41 |
-
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
42 |
-
self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
|
43 |
-
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
44 |
-
|
45 |
-
|
46 |
-
def forward(self, x, latents):
|
47 |
-
"""
|
48 |
-
Args:
|
49 |
-
x (torch.Tensor): image features
|
50 |
-
shape (b, n1, D)
|
51 |
-
latent (torch.Tensor): latent features
|
52 |
-
shape (b, n2, D)
|
53 |
-
"""
|
54 |
-
x = self.norm1(x)
|
55 |
-
latents = self.norm2(latents)
|
56 |
-
|
57 |
-
b, l, _ = latents.shape
|
58 |
-
|
59 |
-
q = self.to_q(latents)
|
60 |
-
kv_input = torch.cat((x, latents), dim=-2)
|
61 |
-
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
62 |
-
|
63 |
-
q = reshape_tensor(q, self.heads)
|
64 |
-
k = reshape_tensor(k, self.heads)
|
65 |
-
v = reshape_tensor(v, self.heads)
|
66 |
-
|
67 |
-
# attention
|
68 |
-
scale = 1 / math.sqrt(math.sqrt(self.dim_head))
|
69 |
-
weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
|
70 |
-
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
|
71 |
-
out = weight @ v
|
72 |
-
|
73 |
-
out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
|
74 |
-
|
75 |
-
return self.to_out(out)
|
76 |
-
|
77 |
-
|
78 |
-
class Resampler(nn.Module):
|
79 |
-
def __init__(
|
80 |
-
self,
|
81 |
-
dim=1024,
|
82 |
-
depth=8,
|
83 |
-
dim_head=64,
|
84 |
-
heads=16,
|
85 |
-
num_queries=8,
|
86 |
-
embedding_dim=768,
|
87 |
-
output_dim=1024,
|
88 |
-
ff_mult=4,
|
89 |
-
):
|
90 |
-
super().__init__()
|
91 |
-
|
92 |
-
self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
|
93 |
-
|
94 |
-
self.proj_in = nn.Linear(embedding_dim, dim)
|
95 |
-
|
96 |
-
self.proj_out = nn.Linear(dim, output_dim)
|
97 |
-
self.norm_out = nn.LayerNorm(output_dim)
|
98 |
-
|
99 |
-
self.layers = nn.ModuleList([])
|
100 |
-
for _ in range(depth):
|
101 |
-
self.layers.append(
|
102 |
-
nn.ModuleList(
|
103 |
-
[
|
104 |
-
PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
|
105 |
-
FeedForward(dim=dim, mult=ff_mult),
|
106 |
-
]
|
107 |
-
)
|
108 |
-
)
|
109 |
-
|
110 |
-
def forward(self, x):
|
111 |
-
|
112 |
-
latents = self.latents.repeat(x.size(0), 1, 1)
|
113 |
-
|
114 |
-
x = self.proj_in(x)
|
115 |
-
|
116 |
-
for attn, ff in self.layers:
|
117 |
-
latents = attn(x, latents) + latents
|
118 |
-
latents = ff(latents) + latents
|
119 |
-
|
120 |
-
latents = self.proj_out(latents)
|
121 |
-
return self.norm_out(latents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ip_adapter/utils.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
import torch.nn.functional as F
|
2 |
-
|
3 |
-
|
4 |
-
def is_torch2_available():
|
5 |
-
return hasattr(F, "scaled_dot_product_attention")
|
|
|
|
|
|
|
|
|
|
|
|