Upload 4-bit AWQ quantized Phi-4-multimodal model
Browse files- .gitattributes +1 -0
- added_tokens.json +12 -0
- chat_template.json +3 -0
- config.json +236 -0
- configuration_phi4mm.py +235 -0
- generation_config.json +10 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling_phi4mm.py +0 -0
- preprocessor_config.json +0 -0
- processing_phi4mm.py +733 -0
- special_tokens_map.json +30 -0
- speech_conformer_encoder.py +0 -0
- tokenizer.json +3 -0
- tokenizer_config.json +127 -0
- vision_siglip_navit.py +1717 -0
- vocab.json +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<|/tool_call|>": 200026,
|
| 3 |
+
"<|/tool|>": 200024,
|
| 4 |
+
"<|assistant|>": 200019,
|
| 5 |
+
"<|end|>": 200020,
|
| 6 |
+
"<|system|>": 200022,
|
| 7 |
+
"<|tag|>": 200028,
|
| 8 |
+
"<|tool_call|>": 200025,
|
| 9 |
+
"<|tool_response|>": 200027,
|
| 10 |
+
"<|tool|>": 200023,
|
| 11 |
+
"<|user|>": 200021
|
| 12 |
+
}
|
chat_template.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}"
|
| 3 |
+
}
|
config.json
ADDED
|
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "microsoft/Phi-4-multimodal-instruct",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Phi4MMForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"audio_processor": {
|
| 9 |
+
"config": {
|
| 10 |
+
"activation": "swish",
|
| 11 |
+
"activation_checkpointing": {
|
| 12 |
+
"interval": 1,
|
| 13 |
+
"module": "transformer",
|
| 14 |
+
"offload": false
|
| 15 |
+
},
|
| 16 |
+
"attention_dim": 1024,
|
| 17 |
+
"attention_heads": 16,
|
| 18 |
+
"batch_norm": false,
|
| 19 |
+
"bias_in_glu": true,
|
| 20 |
+
"causal": true,
|
| 21 |
+
"chunk_size": -1,
|
| 22 |
+
"cnn_layer_norm": true,
|
| 23 |
+
"conv_activation": "swish",
|
| 24 |
+
"conv_glu_type": "swish",
|
| 25 |
+
"depthwise_multiplier": 1,
|
| 26 |
+
"depthwise_seperable_out_channel": 1024,
|
| 27 |
+
"dropout_rate": 0.0,
|
| 28 |
+
"encoder_embedding_config": {
|
| 29 |
+
"input_size": 80
|
| 30 |
+
},
|
| 31 |
+
"ext_pw_kernel_size": 1,
|
| 32 |
+
"ext_pw_out_channel": 1024,
|
| 33 |
+
"input_layer": "nemo_conv",
|
| 34 |
+
"input_size": 80,
|
| 35 |
+
"kernel_size": 3,
|
| 36 |
+
"left_chunk": 18,
|
| 37 |
+
"linear_units": 1536,
|
| 38 |
+
"nemo_conv_settings": {
|
| 39 |
+
"conv_channels": 1024
|
| 40 |
+
},
|
| 41 |
+
"num_blocks": 24,
|
| 42 |
+
"relative_attention_bias_args": {
|
| 43 |
+
"t5_bias_max_distance": 500,
|
| 44 |
+
"type": "t5"
|
| 45 |
+
},
|
| 46 |
+
"time_reduction": 8
|
| 47 |
+
},
|
| 48 |
+
"name": "cascades"
|
| 49 |
+
},
|
| 50 |
+
"auto_map": {
|
| 51 |
+
"AutoConfig": "configuration_phi4mm.Phi4MMConfig",
|
| 52 |
+
"AutoModelForCausalLM": "modeling_phi4mm.Phi4MMForCausalLM",
|
| 53 |
+
"AutoTokenizer": "microsoft/Phi-4-multimodal-instruct--Xenova/gpt-4o"
|
| 54 |
+
},
|
| 55 |
+
"bos_token_id": 199999,
|
| 56 |
+
"embd_layer": {
|
| 57 |
+
"audio_embd_layer": {
|
| 58 |
+
"compression_rate": 8,
|
| 59 |
+
"downsample_rate": 1,
|
| 60 |
+
"embedding_cls": "audio",
|
| 61 |
+
"enable_gradient_checkpointing": true,
|
| 62 |
+
"projection_cls": "mlp",
|
| 63 |
+
"use_conv_downsample": false,
|
| 64 |
+
"use_qformer": false
|
| 65 |
+
},
|
| 66 |
+
"embedding_cls": "image_audio",
|
| 67 |
+
"image_embd_layer": {
|
| 68 |
+
"crop_size": 448,
|
| 69 |
+
"embedding_cls": "tune_image",
|
| 70 |
+
"enable_gradient_checkpointing": true,
|
| 71 |
+
"hd_transform_order": "sub_glb",
|
| 72 |
+
"image_token_compression_cls": "avg_pool_2d",
|
| 73 |
+
"projection_cls": "mlp",
|
| 74 |
+
"use_hd_transform": true,
|
| 75 |
+
"with_learnable_separator": true
|
| 76 |
+
}
|
| 77 |
+
},
|
| 78 |
+
"embd_pdrop": 0.0,
|
| 79 |
+
"eos_token_id": 199999,
|
| 80 |
+
"full_attn_mod": 1,
|
| 81 |
+
"hidden_act": "silu",
|
| 82 |
+
"hidden_size": 3072,
|
| 83 |
+
"img_processor": null,
|
| 84 |
+
"initializer_range": 0.02,
|
| 85 |
+
"intermediate_size": 8192,
|
| 86 |
+
"interpolate_factor": 1,
|
| 87 |
+
"lm_head_bias": false,
|
| 88 |
+
"max_position_embeddings": 131072,
|
| 89 |
+
"mlp_bias": false,
|
| 90 |
+
"model_type": "phi4mm",
|
| 91 |
+
"num_attention_heads": 24,
|
| 92 |
+
"num_hidden_layers": 32,
|
| 93 |
+
"num_key_value_heads": 8,
|
| 94 |
+
"original_max_position_embeddings": 4096,
|
| 95 |
+
"pad_token_id": 199999,
|
| 96 |
+
"partial_rotary_factor": 0.75,
|
| 97 |
+
"quantization_config": {
|
| 98 |
+
"_load_in_4bit": true,
|
| 99 |
+
"_load_in_8bit": false,
|
| 100 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
| 101 |
+
"bnb_4bit_quant_storage": "uint8",
|
| 102 |
+
"bnb_4bit_quant_type": "nf4",
|
| 103 |
+
"bnb_4bit_use_double_quant": true,
|
| 104 |
+
"llm_int8_enable_fp32_cpu_offload": false,
|
| 105 |
+
"llm_int8_has_fp16_weight": false,
|
| 106 |
+
"llm_int8_skip_modules": null,
|
| 107 |
+
"llm_int8_threshold": 6.0,
|
| 108 |
+
"load_in_4bit": true,
|
| 109 |
+
"load_in_8bit": false,
|
| 110 |
+
"quant_method": "bitsandbytes"
|
| 111 |
+
},
|
| 112 |
+
"resid_pdrop": 0.0,
|
| 113 |
+
"rms_norm_eps": 1e-05,
|
| 114 |
+
"rope_scaling": {
|
| 115 |
+
"long_factor": [
|
| 116 |
+
1,
|
| 117 |
+
1.118320672,
|
| 118 |
+
1.250641126,
|
| 119 |
+
1.398617824,
|
| 120 |
+
1.564103225,
|
| 121 |
+
1.74916897,
|
| 122 |
+
1.956131817,
|
| 123 |
+
2.187582649,
|
| 124 |
+
2.446418898,
|
| 125 |
+
2.735880826,
|
| 126 |
+
3.059592084,
|
| 127 |
+
3.421605075,
|
| 128 |
+
3.826451687,
|
| 129 |
+
4.279200023,
|
| 130 |
+
4.785517845,
|
| 131 |
+
5.351743533,
|
| 132 |
+
5.984965424,
|
| 133 |
+
6.693110555,
|
| 134 |
+
7.485043894,
|
| 135 |
+
8.370679318,
|
| 136 |
+
9.36110372,
|
| 137 |
+
10.4687158,
|
| 138 |
+
11.70738129,
|
| 139 |
+
13.09260651,
|
| 140 |
+
14.64173252,
|
| 141 |
+
16.37415215,
|
| 142 |
+
18.31155283,
|
| 143 |
+
20.47818807,
|
| 144 |
+
22.90118105,
|
| 145 |
+
25.61086418,
|
| 146 |
+
28.64115884,
|
| 147 |
+
32.03,
|
| 148 |
+
32.1,
|
| 149 |
+
32.13,
|
| 150 |
+
32.23,
|
| 151 |
+
32.6,
|
| 152 |
+
32.61,
|
| 153 |
+
32.64,
|
| 154 |
+
32.66,
|
| 155 |
+
32.7,
|
| 156 |
+
32.71,
|
| 157 |
+
32.93,
|
| 158 |
+
32.97,
|
| 159 |
+
33.28,
|
| 160 |
+
33.49,
|
| 161 |
+
33.5,
|
| 162 |
+
44.16,
|
| 163 |
+
47.77
|
| 164 |
+
],
|
| 165 |
+
"short_factor": [
|
| 166 |
+
1.0,
|
| 167 |
+
1.0,
|
| 168 |
+
1.0,
|
| 169 |
+
1.0,
|
| 170 |
+
1.0,
|
| 171 |
+
1.0,
|
| 172 |
+
1.0,
|
| 173 |
+
1.0,
|
| 174 |
+
1.0,
|
| 175 |
+
1.0,
|
| 176 |
+
1.0,
|
| 177 |
+
1.0,
|
| 178 |
+
1.0,
|
| 179 |
+
1.0,
|
| 180 |
+
1.0,
|
| 181 |
+
1.0,
|
| 182 |
+
1.0,
|
| 183 |
+
1.0,
|
| 184 |
+
1.0,
|
| 185 |
+
1.0,
|
| 186 |
+
1.0,
|
| 187 |
+
1.0,
|
| 188 |
+
1.0,
|
| 189 |
+
1.0,
|
| 190 |
+
1.0,
|
| 191 |
+
1.0,
|
| 192 |
+
1.0,
|
| 193 |
+
1.0,
|
| 194 |
+
1.0,
|
| 195 |
+
1.0,
|
| 196 |
+
1.0,
|
| 197 |
+
1.0,
|
| 198 |
+
1.0,
|
| 199 |
+
1.0,
|
| 200 |
+
1.0,
|
| 201 |
+
1.0,
|
| 202 |
+
1.0,
|
| 203 |
+
1.0,
|
| 204 |
+
1.0,
|
| 205 |
+
1.0,
|
| 206 |
+
1.0,
|
| 207 |
+
1.0,
|
| 208 |
+
1.0,
|
| 209 |
+
1.0,
|
| 210 |
+
1.0,
|
| 211 |
+
1.0,
|
| 212 |
+
1.0,
|
| 213 |
+
1.0
|
| 214 |
+
],
|
| 215 |
+
"type": "longrope"
|
| 216 |
+
},
|
| 217 |
+
"rope_theta": 10000.0,
|
| 218 |
+
"sliding_window": 262144,
|
| 219 |
+
"speech_lora": {
|
| 220 |
+
"dp": 0.01,
|
| 221 |
+
"layer": "((layers.*self_attn\\.(qkv|o)_proj)|(layers.*mlp\\.(gate_up|down)_proj))",
|
| 222 |
+
"lora_alpha": 640,
|
| 223 |
+
"r": 320
|
| 224 |
+
},
|
| 225 |
+
"tie_word_embeddings": true,
|
| 226 |
+
"torch_dtype": "bfloat16",
|
| 227 |
+
"transformers_version": "4.47.1",
|
| 228 |
+
"use_cache": true,
|
| 229 |
+
"vision_lora": {
|
| 230 |
+
"dp": 0.0,
|
| 231 |
+
"layer": "layers.*((self_attn\\.(qkv_proj|o_proj))|(mlp\\.(gate_up|down)_proj))",
|
| 232 |
+
"lora_alpha": 512,
|
| 233 |
+
"r": 256
|
| 234 |
+
},
|
| 235 |
+
"vocab_size": 200064
|
| 236 |
+
}
|
configuration_phi4mm.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
""" Phi-4-MM model configuration"""
|
| 17 |
+
|
| 18 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 19 |
+
from transformers.utils import logging
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
logger = logging.get_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class Phi4MMConfig(PretrainedConfig):
|
| 26 |
+
r"""
|
| 27 |
+
This is the configuration class to store the configuration of a [`Phi4MMModel`]. It is used to instantiate a Phi-4-MM
|
| 28 |
+
model according to the specified arguments, defining the model architecture.
|
| 29 |
+
|
| 30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 31 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 32 |
+
|
| 33 |
+
Args:
|
| 34 |
+
vocab_size (`int`, *optional*, defaults to 200064):
|
| 35 |
+
Vocabulary size of the Phi-4-MM model. Defines the number of different tokens that can be represented by the
|
| 36 |
+
`inputs_ids` passed when calling [`Phi4MMModel`].
|
| 37 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
| 38 |
+
Dimension of the hidden representations.
|
| 39 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
| 40 |
+
Dimension of the MLP representations.
|
| 41 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 42 |
+
Number of hidden layers in the Transformer decoder.
|
| 43 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 44 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 45 |
+
num_key_value_heads (`int`, *optional*):
|
| 46 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 47 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 48 |
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 49 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 50 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 51 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 52 |
+
`num_attention_heads`.
|
| 53 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
| 54 |
+
Dropout probability for mlp outputs.
|
| 55 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
| 56 |
+
The dropout ratio for the embeddings.
|
| 57 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 58 |
+
The dropout ratio after computing the attention scores.
|
| 59 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 60 |
+
The non-linear activation function (function or string) in the decoder.
|
| 61 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 62 |
+
The maximum sequence length that this model might ever be used with.
|
| 63 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
| 64 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
| 65 |
+
original RoPE embeddings when using long scaling.
|
| 66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
| 69 |
+
The epsilon value used for the RMSNorm.
|
| 70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 72 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
| 73 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 74 |
+
Whether to tie weight embeddings
|
| 75 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 76 |
+
The base period of the RoPE embeddings.
|
| 77 |
+
rope_scaling (`dict`, *optional*):
|
| 78 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
| 79 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
|
| 80 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
| 81 |
+
divided by the number of attention heads divided by 2.
|
| 82 |
+
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
|
| 83 |
+
Percentage of the query and keys which will have rotary embedding.
|
| 84 |
+
bos_token_id (`int`, *optional*, defaults to 199999):
|
| 85 |
+
The id of the "beginning-of-sequence" token.
|
| 86 |
+
eos_token_id (`int`, *optional*, defaults to 199999):
|
| 87 |
+
The id of the "end-of-sequence" token.
|
| 88 |
+
pad_token_id (`int`, *optional*, defaults to 199999):
|
| 89 |
+
The id of the padding token.
|
| 90 |
+
sliding_window (`int`, *optional*):
|
| 91 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
| 92 |
+
|
| 93 |
+
Example:
|
| 94 |
+
|
| 95 |
+
```python
|
| 96 |
+
>>> from transformers import Phi4MMModel, Phi4MMConfig
|
| 97 |
+
|
| 98 |
+
>>> # Initializing a Phi-4-MM style configuration
|
| 99 |
+
>>> configuration = Phi4MMConfig.from_pretrained("TBA")
|
| 100 |
+
|
| 101 |
+
>>> # Initializing a model from the configuration
|
| 102 |
+
>>> model = Phi4MMModel(configuration)
|
| 103 |
+
|
| 104 |
+
>>> # Accessing the model configuration
|
| 105 |
+
>>> configuration = model.config
|
| 106 |
+
```"""
|
| 107 |
+
|
| 108 |
+
model_type = "phi4mm"
|
| 109 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 110 |
+
|
| 111 |
+
def __init__(
|
| 112 |
+
self,
|
| 113 |
+
vocab_size=200064,
|
| 114 |
+
hidden_size=3072,
|
| 115 |
+
intermediate_size=8192,
|
| 116 |
+
num_hidden_layers=32,
|
| 117 |
+
num_attention_heads=32,
|
| 118 |
+
num_key_value_heads=None,
|
| 119 |
+
resid_pdrop=0.0,
|
| 120 |
+
embd_pdrop=0.0,
|
| 121 |
+
attention_dropout=0.0,
|
| 122 |
+
hidden_act="silu",
|
| 123 |
+
max_position_embeddings=4096,
|
| 124 |
+
original_max_position_embeddings=4096,
|
| 125 |
+
initializer_range=0.02,
|
| 126 |
+
rms_norm_eps=1e-5,
|
| 127 |
+
use_cache=True,
|
| 128 |
+
tie_word_embeddings=False,
|
| 129 |
+
rope_theta=10000.0,
|
| 130 |
+
rope_scaling=None,
|
| 131 |
+
partial_rotary_factor=1,
|
| 132 |
+
bos_token_id=199999,
|
| 133 |
+
eos_token_id=199999,
|
| 134 |
+
pad_token_id=199999,
|
| 135 |
+
sliding_window=None,
|
| 136 |
+
embd_layer: str = "default",
|
| 137 |
+
img_processor=None,
|
| 138 |
+
audio_processor=None,
|
| 139 |
+
vision_lora=None,
|
| 140 |
+
speech_lora=None,
|
| 141 |
+
**kwargs,
|
| 142 |
+
):
|
| 143 |
+
self.embd_layer = embd_layer
|
| 144 |
+
self.img_processor = img_processor
|
| 145 |
+
self.audio_processor = audio_processor
|
| 146 |
+
self.vision_lora = vision_lora
|
| 147 |
+
self.speech_lora = speech_lora
|
| 148 |
+
|
| 149 |
+
self.vocab_size = vocab_size
|
| 150 |
+
self.hidden_size = hidden_size
|
| 151 |
+
self.intermediate_size = intermediate_size
|
| 152 |
+
self.num_hidden_layers = num_hidden_layers
|
| 153 |
+
self.num_attention_heads = num_attention_heads
|
| 154 |
+
|
| 155 |
+
if num_key_value_heads is None:
|
| 156 |
+
num_key_value_heads = num_attention_heads
|
| 157 |
+
|
| 158 |
+
self.num_key_value_heads = num_key_value_heads
|
| 159 |
+
self.resid_pdrop = resid_pdrop
|
| 160 |
+
self.embd_pdrop = embd_pdrop
|
| 161 |
+
self.attention_dropout = attention_dropout
|
| 162 |
+
self.hidden_act = hidden_act
|
| 163 |
+
self.max_position_embeddings = max_position_embeddings
|
| 164 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
| 165 |
+
self.initializer_range = initializer_range
|
| 166 |
+
self.rms_norm_eps = rms_norm_eps
|
| 167 |
+
self.use_cache = use_cache
|
| 168 |
+
self.rope_theta = rope_theta
|
| 169 |
+
self.rope_scaling = rope_scaling
|
| 170 |
+
self.partial_rotary_factor = partial_rotary_factor
|
| 171 |
+
self._rope_scaling_adjustment()
|
| 172 |
+
self._rope_scaling_validation()
|
| 173 |
+
self.sliding_window = sliding_window
|
| 174 |
+
|
| 175 |
+
super().__init__(
|
| 176 |
+
bos_token_id=bos_token_id,
|
| 177 |
+
eos_token_id=eos_token_id,
|
| 178 |
+
pad_token_id=pad_token_id,
|
| 179 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 180 |
+
**kwargs,
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
def _rope_scaling_adjustment(self):
|
| 184 |
+
"""
|
| 185 |
+
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
|
| 186 |
+
"""
|
| 187 |
+
if self.rope_scaling is None:
|
| 188 |
+
return
|
| 189 |
+
|
| 190 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 191 |
+
|
| 192 |
+
# For backward compatibility if previous version used "su" or "yarn"
|
| 193 |
+
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
|
| 194 |
+
self.rope_scaling["type"] = "longrope"
|
| 195 |
+
|
| 196 |
+
def _rope_scaling_validation(self):
|
| 197 |
+
"""
|
| 198 |
+
Validate the `rope_scaling` configuration.
|
| 199 |
+
"""
|
| 200 |
+
if self.rope_scaling is None:
|
| 201 |
+
return
|
| 202 |
+
|
| 203 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
| 204 |
+
raise ValueError(
|
| 205 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
| 206 |
+
f"got {self.rope_scaling}"
|
| 207 |
+
)
|
| 208 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 209 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
| 210 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
| 211 |
+
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
|
| 212 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
|
| 213 |
+
if not (
|
| 214 |
+
isinstance(rope_scaling_short_factor, list)
|
| 215 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
| 216 |
+
):
|
| 217 |
+
raise ValueError(
|
| 218 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
| 219 |
+
)
|
| 220 |
+
rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
|
| 221 |
+
if not len(rope_scaling_short_factor) == rotary_ndims // 2:
|
| 222 |
+
raise ValueError(
|
| 223 |
+
f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
|
| 224 |
+
)
|
| 225 |
+
if not (
|
| 226 |
+
isinstance(rope_scaling_long_factor, list)
|
| 227 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
| 228 |
+
):
|
| 229 |
+
raise ValueError(
|
| 230 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
| 231 |
+
)
|
| 232 |
+
if not len(rope_scaling_long_factor) == rotary_ndims // 2:
|
| 233 |
+
raise ValueError(
|
| 234 |
+
f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
|
| 235 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 199999,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
200020,
|
| 6 |
+
199999
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 199999,
|
| 9 |
+
"transformers_version": "4.47.1"
|
| 10 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76ca7638f34838a38b975f2a718be9dd0bf9453a9763cdd5eec20051c0fef3c0
|
| 3 |
+
size 3953477438
|
modeling_phi4mm.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
preprocessor_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
processing_phi4mm.py
ADDED
|
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
Processor class for Phi4MM
|
| 17 |
+
"""
|
| 18 |
+
import re
|
| 19 |
+
from typing import List, Optional, Tuple, Union
|
| 20 |
+
import math
|
| 21 |
+
from enum import Enum
|
| 22 |
+
|
| 23 |
+
import numpy as np
|
| 24 |
+
import scipy
|
| 25 |
+
import torch
|
| 26 |
+
import torchvision
|
| 27 |
+
|
| 28 |
+
from transformers import AutoFeatureExtractor, AutoImageProcessor
|
| 29 |
+
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor
|
| 30 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
| 31 |
+
from transformers.image_utils import (
|
| 32 |
+
ImageInput,
|
| 33 |
+
make_list_of_images,
|
| 34 |
+
valid_images,
|
| 35 |
+
)
|
| 36 |
+
from transformers.processing_utils import ProcessorMixin
|
| 37 |
+
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
|
| 38 |
+
from transformers.utils import TensorType, logging
|
| 39 |
+
from torch.nn.utils.rnn import pad_sequence
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
logger = logging.get_logger(__name__)
|
| 43 |
+
|
| 44 |
+
# Special tokens
|
| 45 |
+
_COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN = r'<\|image_\d+\|>' # For backward compatibility
|
| 46 |
+
_COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN = r'<\|audio_\d+\|>' # For backward compatibility
|
| 47 |
+
_IMAGE_SPECIAL_TOKEN = '<|endoftext10|>'
|
| 48 |
+
_AUDIO_SPECIAL_TOKEN = '<|endoftext11|>'
|
| 49 |
+
_IMAGE_SPECIAL_TOKEN_ID = 200010 # '<|endoftext10|>', or we can better name it (in `tokenizer_config.json`)
|
| 50 |
+
_AUDIO_SPECIAL_TOKEN_ID = 200011 # '<|endoftext11|>'
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class InputMode(Enum):
|
| 54 |
+
LANGUAGE = 0
|
| 55 |
+
VISION = 1
|
| 56 |
+
SPEECH = 2
|
| 57 |
+
VISION_SPEECH = 3
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class Phi4MMImageProcessor(BaseImageProcessor):
|
| 61 |
+
r"""
|
| 62 |
+
Constructs a Phi4MM image processor.
|
| 63 |
+
"""
|
| 64 |
+
model_input_names = ["input_image_embeds", "image_sizes", "image_attention_mask"]
|
| 65 |
+
|
| 66 |
+
def __init__(
|
| 67 |
+
self,
|
| 68 |
+
dynamic_hd,
|
| 69 |
+
**kwargs,
|
| 70 |
+
) -> None:
|
| 71 |
+
super().__init__(**kwargs)
|
| 72 |
+
self.dynamic_hd = dynamic_hd
|
| 73 |
+
|
| 74 |
+
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
|
| 75 |
+
best_ratio_diff = float('inf')
|
| 76 |
+
best_ratio = (1, 1)
|
| 77 |
+
area = width * height
|
| 78 |
+
for ratio in target_ratios:
|
| 79 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
| 80 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 81 |
+
if ratio_diff < best_ratio_diff:
|
| 82 |
+
best_ratio_diff = ratio_diff
|
| 83 |
+
best_ratio = ratio
|
| 84 |
+
elif ratio_diff == best_ratio_diff:
|
| 85 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 86 |
+
best_ratio = ratio
|
| 87 |
+
return best_ratio
|
| 88 |
+
|
| 89 |
+
def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=384, mask_size=27, use_thumbnail=True):
|
| 90 |
+
orig_width, orig_height = image.size
|
| 91 |
+
|
| 92 |
+
w_crop_num = math.ceil(orig_width/float(image_size))
|
| 93 |
+
h_crop_num = math.ceil(orig_height/float(image_size))
|
| 94 |
+
if w_crop_num * h_crop_num > max_num:
|
| 95 |
+
|
| 96 |
+
aspect_ratio = orig_width / orig_height
|
| 97 |
+
|
| 98 |
+
# calculate the existing image aspect ratio
|
| 99 |
+
target_ratios = set(
|
| 100 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
| 101 |
+
i * j <= max_num and i * j >= min_num)
|
| 102 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 103 |
+
|
| 104 |
+
# find the closest aspect ratio to the target
|
| 105 |
+
target_aspect_ratio = self.find_closest_aspect_ratio(
|
| 106 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 107 |
+
|
| 108 |
+
# calculate the target width and height
|
| 109 |
+
target_width = image_size * target_aspect_ratio[0]
|
| 110 |
+
target_height = image_size * target_aspect_ratio[1]
|
| 111 |
+
else:
|
| 112 |
+
target_width = image_size * w_crop_num
|
| 113 |
+
target_height = image_size * h_crop_num
|
| 114 |
+
target_aspect_ratio = (w_crop_num, h_crop_num)
|
| 115 |
+
|
| 116 |
+
# Calculate the ratio
|
| 117 |
+
ratio_width = target_width / orig_width
|
| 118 |
+
ratio_height = target_height / orig_height
|
| 119 |
+
if ratio_width < ratio_height:
|
| 120 |
+
new_size = (target_width, int(orig_height * ratio_width))
|
| 121 |
+
padding_width = 0
|
| 122 |
+
padding_height = target_height - int(orig_height * ratio_width)
|
| 123 |
+
else:
|
| 124 |
+
new_size = (int(orig_width * ratio_height), target_height)
|
| 125 |
+
padding_width = target_width - int(orig_width * ratio_height)
|
| 126 |
+
padding_height = 0
|
| 127 |
+
|
| 128 |
+
attention_mask = torch.ones((int(mask_size*target_aspect_ratio[1]), int(mask_size*target_aspect_ratio[0])))
|
| 129 |
+
if padding_width >= 14:
|
| 130 |
+
attention_mask[:, -math.floor(padding_width/14):] = 0
|
| 131 |
+
if padding_height >= 14:
|
| 132 |
+
attention_mask[-math.floor(padding_height/14):,:] = 0
|
| 133 |
+
assert attention_mask.sum() > 0
|
| 134 |
+
|
| 135 |
+
if min(new_size[1], target_height) < 10 or min(new_size[0], target_width) < 10:
|
| 136 |
+
raise ValueError(f'the aspect ratio is very extreme {new_size}')
|
| 137 |
+
|
| 138 |
+
image = torchvision.transforms.functional.resize(image, [new_size[1], new_size[0]],)
|
| 139 |
+
|
| 140 |
+
resized_img = torchvision.transforms.functional.pad(image, [0, 0, padding_width, padding_height], fill=[255,255,255])
|
| 141 |
+
|
| 142 |
+
return resized_img, attention_mask
|
| 143 |
+
|
| 144 |
+
def pad_to_max_num_crops(self, images, max_crops=5):
|
| 145 |
+
"""
|
| 146 |
+
images: B x 3 x H x W, B<=max_crops
|
| 147 |
+
"""
|
| 148 |
+
B, _, H, W = images.shape
|
| 149 |
+
if B < max_crops:
|
| 150 |
+
pad = torch.zeros(max_crops - B, 3, H, W, dtype=images.dtype, device=images.device)
|
| 151 |
+
images = torch.cat([images, pad], dim=0)
|
| 152 |
+
return images
|
| 153 |
+
|
| 154 |
+
def pad_mask_to_max_num_crops(self, masks, max_crops=5):
|
| 155 |
+
B, H, W = masks.shape
|
| 156 |
+
if B < max_crops:
|
| 157 |
+
pad = torch.ones(max_crops - B, H, W, dtype=masks.dtype, device=masks.device)
|
| 158 |
+
masks = torch.cat([masks, pad], dim=0)
|
| 159 |
+
return masks
|
| 160 |
+
|
| 161 |
+
def preprocess(
|
| 162 |
+
self,
|
| 163 |
+
images: ImageInput,
|
| 164 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 165 |
+
):
|
| 166 |
+
"""
|
| 167 |
+
Args:
|
| 168 |
+
images (`ImageInput`):
|
| 169 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
| 170 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
| 171 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
| 172 |
+
The type of tensors to return. Can be one of:
|
| 173 |
+
- Unset: Return a list of `np.ndarray`.
|
| 174 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
| 175 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
| 176 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
| 177 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
| 178 |
+
"""
|
| 179 |
+
images = make_list_of_images(images)
|
| 180 |
+
|
| 181 |
+
if not valid_images(images):
|
| 182 |
+
raise ValueError(
|
| 183 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
| 184 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
# Basic settings.
|
| 188 |
+
img_processor = torchvision.transforms.Compose([
|
| 189 |
+
torchvision.transforms.ToTensor(),
|
| 190 |
+
torchvision.transforms.Normalize(
|
| 191 |
+
(0.5, 0.5, 0.5),
|
| 192 |
+
(0.5, 0.5, 0.5)
|
| 193 |
+
),
|
| 194 |
+
])
|
| 195 |
+
dyhd_base_resolution = 448
|
| 196 |
+
|
| 197 |
+
# Dynamic HD
|
| 198 |
+
base_resolution = dyhd_base_resolution
|
| 199 |
+
images = [image.convert('RGB') for image in images]
|
| 200 |
+
# cover 384 and 448 resolution
|
| 201 |
+
mask_resolution = base_resolution // 14
|
| 202 |
+
elems, image_attention_masks = [], []
|
| 203 |
+
for im in images:
|
| 204 |
+
elem, attention_mask = self.dynamic_preprocess(im, max_num=self.dynamic_hd, image_size=base_resolution, mask_size=mask_resolution)
|
| 205 |
+
elems.append(elem)
|
| 206 |
+
image_attention_masks.append(attention_mask)
|
| 207 |
+
hd_images = [img_processor(im) for im in elems]
|
| 208 |
+
global_image = [torch.nn.functional.interpolate(im.unsqueeze(0).float(), size=(base_resolution, base_resolution), mode='bicubic',).to(im.dtype) for im in hd_images]
|
| 209 |
+
shapes = [[im.size(1), im.size(2)] for im in hd_images]
|
| 210 |
+
mask_shapes = [[mask.size(0), mask.size(1)] for mask in image_attention_masks]
|
| 211 |
+
global_attention_mask = [torch.ones((1, mask_resolution, mask_resolution)) for _ in hd_images]
|
| 212 |
+
hd_images_reshape = [im.reshape(1, 3,
|
| 213 |
+
h//base_resolution,
|
| 214 |
+
base_resolution,
|
| 215 |
+
w//base_resolution,
|
| 216 |
+
base_resolution
|
| 217 |
+
).permute(0,2,4,1,3,5).reshape(-1, 3, base_resolution, base_resolution).contiguous() for im, (h, w) in zip(hd_images, shapes)]
|
| 218 |
+
attention_masks_reshape = [mask.reshape(1,
|
| 219 |
+
h//mask_resolution,
|
| 220 |
+
mask_resolution,
|
| 221 |
+
w//mask_resolution,
|
| 222 |
+
mask_resolution
|
| 223 |
+
).permute(0,1,3,2,4).reshape(-1, mask_resolution, mask_resolution).contiguous() for mask, (h, w) in zip(image_attention_masks, mask_shapes)]
|
| 224 |
+
downsample_attention_masks = [mask[:,0::2,0::2].reshape(1,
|
| 225 |
+
h//mask_resolution,
|
| 226 |
+
w//mask_resolution,
|
| 227 |
+
mask_resolution//2+mask_resolution%2,
|
| 228 |
+
mask_resolution//2+mask_resolution%2
|
| 229 |
+
).permute(0,1,3,2,4) for mask, (h,w) in zip(attention_masks_reshape, mask_shapes)]
|
| 230 |
+
downsample_attention_masks = [mask.reshape(mask.size(1)*mask.size(2), mask.size(3)*mask.size(4))for mask in downsample_attention_masks]
|
| 231 |
+
num_img_tokens = [256 + 1 + int(mask.sum().item()) + int(mask[:,0].sum().item()) + 16 for mask in downsample_attention_masks]
|
| 232 |
+
|
| 233 |
+
hd_images_reshape = [torch.cat([_global_image] + [_im], dim=0) for _global_image, _im in zip(global_image, hd_images_reshape)]
|
| 234 |
+
hd_masks_reshape = [torch.cat([_global_mask] + [_mask], dim=0) for _global_mask, _mask in zip(global_attention_mask, attention_masks_reshape)]
|
| 235 |
+
max_crops = max([img.size(0) for img in hd_images_reshape])
|
| 236 |
+
image_transformed = [self.pad_to_max_num_crops(im, max_crops) for im in hd_images_reshape]
|
| 237 |
+
image_transformed = torch.stack(image_transformed, dim=0)
|
| 238 |
+
mask_transformed = [self.pad_mask_to_max_num_crops(mask, max_crops) for mask in hd_masks_reshape]
|
| 239 |
+
mask_transformed = torch.stack(mask_transformed, dim=0)
|
| 240 |
+
|
| 241 |
+
returned_input_image_embeds = image_transformed
|
| 242 |
+
returned_image_sizes = torch.tensor(shapes, dtype=torch.long)
|
| 243 |
+
returned_image_attention_mask = mask_transformed
|
| 244 |
+
returned_num_img_tokens = num_img_tokens
|
| 245 |
+
|
| 246 |
+
data = {
|
| 247 |
+
"input_image_embeds": returned_input_image_embeds,
|
| 248 |
+
"image_sizes": returned_image_sizes,
|
| 249 |
+
"image_attention_mask": returned_image_attention_mask,
|
| 250 |
+
"num_img_tokens": returned_num_img_tokens,
|
| 251 |
+
}
|
| 252 |
+
|
| 253 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
AudioInput = Tuple[Union[np.ndarray, torch.Tensor], int]
|
| 257 |
+
AudioInputs = List[AudioInput]
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def speechlib_mel(sample_rate, n_fft, n_mels, fmin=None, fmax=None):
|
| 261 |
+
"""Create a Mel filter-bank the same as SpeechLib FbankFC.
|
| 262 |
+
|
| 263 |
+
Args:
|
| 264 |
+
sample_rate (int): Sample rate in Hz. number > 0 [scalar]
|
| 265 |
+
n_fft (int): FFT size. int > 0 [scalar]
|
| 266 |
+
n_mel (int): Mel filter size. int > 0 [scalar]
|
| 267 |
+
fmin (float): lowest frequency (in Hz). If None use 0.0.
|
| 268 |
+
float >= 0 [scalar]
|
| 269 |
+
fmax: highest frequency (in Hz). If None use sample_rate / 2.
|
| 270 |
+
float >= 0 [scalar]
|
| 271 |
+
|
| 272 |
+
Returns
|
| 273 |
+
out (numpy.ndarray): Mel transform matrix
|
| 274 |
+
[shape=(n_mels, 1 + n_fft/2)]
|
| 275 |
+
"""
|
| 276 |
+
|
| 277 |
+
bank_width = int(n_fft // 2 + 1)
|
| 278 |
+
if fmax is None:
|
| 279 |
+
fmax = sample_rate / 2
|
| 280 |
+
if fmin is None:
|
| 281 |
+
fmin = 0
|
| 282 |
+
assert fmin >= 0, "fmin cannot be negtive"
|
| 283 |
+
assert fmin < fmax <= sample_rate / 2, "fmax must be between (fmin, samplerate / 2]"
|
| 284 |
+
|
| 285 |
+
def mel(f):
|
| 286 |
+
return 1127.0 * np.log(1.0 + f / 700.0)
|
| 287 |
+
|
| 288 |
+
def bin2mel(fft_bin):
|
| 289 |
+
return 1127.0 * np.log(1.0 + fft_bin * sample_rate / (n_fft * 700.0))
|
| 290 |
+
|
| 291 |
+
def f2bin(f):
|
| 292 |
+
return int((f * n_fft / sample_rate) + 0.5)
|
| 293 |
+
|
| 294 |
+
# Spec 1: FFT bin range [f2bin(fmin) + 1, f2bin(fmax) - 1]
|
| 295 |
+
klo = f2bin(fmin) + 1
|
| 296 |
+
khi = f2bin(fmax)
|
| 297 |
+
|
| 298 |
+
khi = max(khi, klo)
|
| 299 |
+
|
| 300 |
+
# Spec 2: SpeechLib uses trianges in Mel space
|
| 301 |
+
mlo = mel(fmin)
|
| 302 |
+
mhi = mel(fmax)
|
| 303 |
+
m_centers = np.linspace(mlo, mhi, n_mels + 2)
|
| 304 |
+
ms = (mhi - mlo) / (n_mels + 1)
|
| 305 |
+
|
| 306 |
+
matrix = np.zeros((n_mels, bank_width), dtype=np.float32)
|
| 307 |
+
for m in range(0, n_mels):
|
| 308 |
+
left = m_centers[m]
|
| 309 |
+
center = m_centers[m + 1]
|
| 310 |
+
right = m_centers[m + 2]
|
| 311 |
+
for fft_bin in range(klo, khi):
|
| 312 |
+
mbin = bin2mel(fft_bin)
|
| 313 |
+
if left < mbin < right:
|
| 314 |
+
matrix[m, fft_bin] = 1.0 - abs(center - mbin) / ms
|
| 315 |
+
|
| 316 |
+
return matrix
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class Phi4MMAudioFeatureExtractor(SequenceFeatureExtractor):
|
| 320 |
+
model_input_names = ["input_audio_embeds", "audio_embed_sizes", "audio_attention_mask"]
|
| 321 |
+
|
| 322 |
+
def __init__(self, audio_compression_rate, audio_downsample_rate, audio_feat_stride, **kwargs):
|
| 323 |
+
feature_size = 80
|
| 324 |
+
sampling_rate = 16000
|
| 325 |
+
padding_value = 0.0
|
| 326 |
+
super().__init__(feature_size, sampling_rate, padding_value, **kwargs)
|
| 327 |
+
|
| 328 |
+
self.compression_rate = audio_compression_rate
|
| 329 |
+
self.qformer_compression_rate = audio_downsample_rate
|
| 330 |
+
self.feat_stride = audio_feat_stride
|
| 331 |
+
|
| 332 |
+
self._eightk_method = "fillzero"
|
| 333 |
+
self._mel = speechlib_mel(16000, 512, 80, fmin=None, fmax=7690).T
|
| 334 |
+
|
| 335 |
+
self._hamming400 = np.hamming(400) # for 16k audio
|
| 336 |
+
self._hamming200 = np.hamming(200) # for 8k audio
|
| 337 |
+
|
| 338 |
+
def duration_to_frames(self, duration):
|
| 339 |
+
"""duration in s, estimated frames"""
|
| 340 |
+
frame_rate = 10
|
| 341 |
+
|
| 342 |
+
num_frames = duration * 1000 // frame_rate
|
| 343 |
+
return num_frames
|
| 344 |
+
|
| 345 |
+
def __call__(
|
| 346 |
+
self,
|
| 347 |
+
audios: List[AudioInput],
|
| 348 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
| 349 |
+
):
|
| 350 |
+
# Ref: https://github.com/huggingface/transformers/blob/v4.47.0/src/transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py#L161
|
| 351 |
+
returned_input_audio_embeds = []
|
| 352 |
+
returned_audio_embed_sizes = []
|
| 353 |
+
audio_frames_list = []
|
| 354 |
+
|
| 355 |
+
for audio_data, sample_rate in audios:
|
| 356 |
+
audio_embeds = self._extract_features(audio_data, sample_rate)
|
| 357 |
+
audio_frames = len(audio_embeds) * self.feat_stride
|
| 358 |
+
audio_embed_size = self._compute_audio_embed_size(audio_frames)
|
| 359 |
+
|
| 360 |
+
returned_input_audio_embeds.append(torch.tensor(audio_embeds))
|
| 361 |
+
returned_audio_embed_sizes.append(torch.tensor(audio_embed_size).long())
|
| 362 |
+
audio_frames_list.append(audio_frames)
|
| 363 |
+
|
| 364 |
+
returned_input_audio_embeds = pad_sequence(
|
| 365 |
+
returned_input_audio_embeds, batch_first=True
|
| 366 |
+
)
|
| 367 |
+
returned_audio_embed_sizes = torch.stack(returned_audio_embed_sizes, dim=0)
|
| 368 |
+
audio_frames = torch.tensor(audio_frames_list)
|
| 369 |
+
returned_audio_attention_mask = torch.arange(0, audio_frames.max()).unsqueeze(0) < audio_frames.unsqueeze(1) if len(audios) > 1 else None
|
| 370 |
+
|
| 371 |
+
data = {
|
| 372 |
+
"input_audio_embeds": returned_input_audio_embeds,
|
| 373 |
+
"audio_embed_sizes": returned_audio_embed_sizes,
|
| 374 |
+
}
|
| 375 |
+
if returned_audio_attention_mask is not None:
|
| 376 |
+
data["audio_attention_mask"] = returned_audio_attention_mask
|
| 377 |
+
|
| 378 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
| 379 |
+
|
| 380 |
+
def _extract_spectrogram(self, wav, fs):
|
| 381 |
+
"""Extract spectrogram features from waveform.
|
| 382 |
+
Args:
|
| 383 |
+
wav (1D array): waveform of the input
|
| 384 |
+
fs (int): sampling rate of the waveform, 16000 or 8000.
|
| 385 |
+
If fs=8000, the waveform will be resampled to 16000Hz.
|
| 386 |
+
Output:
|
| 387 |
+
log_fbank (2D array): a TxD matrix of log Mel filterbank features.
|
| 388 |
+
D=80, and T is the number of frames.
|
| 389 |
+
"""
|
| 390 |
+
if wav.ndim > 1:
|
| 391 |
+
wav = np.squeeze(wav)
|
| 392 |
+
|
| 393 |
+
# by default, we extract the mean if stereo
|
| 394 |
+
if len(wav.shape) == 2:
|
| 395 |
+
wav = wav.mean(1)
|
| 396 |
+
|
| 397 |
+
# Resample to 16000 or 8000 if needed
|
| 398 |
+
if fs > 16000:
|
| 399 |
+
wav = scipy.signal.resample_poly(wav, 1, fs // 16000)
|
| 400 |
+
fs = 16000
|
| 401 |
+
elif 8000 < fs < 16000:
|
| 402 |
+
wav = scipy.signal.resample_poly(wav, 1, fs // 8000)
|
| 403 |
+
fs = 8000
|
| 404 |
+
elif fs < 8000:
|
| 405 |
+
raise RuntimeError(f"Unsupported sample rate {fs}")
|
| 406 |
+
|
| 407 |
+
if fs == 8000:
|
| 408 |
+
if self._eightk_method == "resample":
|
| 409 |
+
# Input audio is 8 kHz. Convert to 16 kHz before feature
|
| 410 |
+
# extraction
|
| 411 |
+
wav = scipy.signal.resample_poly(wav, 2, 1)
|
| 412 |
+
fs = 16000
|
| 413 |
+
# Do nothing here for fillzero method
|
| 414 |
+
elif fs != 16000:
|
| 415 |
+
# Input audio is not a supported sample rate.
|
| 416 |
+
raise RuntimeError(f"Input data using an unsupported sample rate: {fs}")
|
| 417 |
+
|
| 418 |
+
preemphasis = 0.97
|
| 419 |
+
|
| 420 |
+
if fs == 8000:
|
| 421 |
+
n_fft = 256
|
| 422 |
+
win_length = 200
|
| 423 |
+
hop_length = 80
|
| 424 |
+
fft_window = self._hamming200
|
| 425 |
+
elif fs == 16000:
|
| 426 |
+
n_fft = 512
|
| 427 |
+
win_length = 400
|
| 428 |
+
hop_length = 160
|
| 429 |
+
fft_window = self._hamming400
|
| 430 |
+
|
| 431 |
+
# Spec 1: SpeechLib cut remaining sample insufficient for a hop
|
| 432 |
+
n_batch = (wav.shape[0] - win_length) // hop_length + 1
|
| 433 |
+
# Here we don't use stride_tricks since the input array may not satisfy
|
| 434 |
+
# memory layout requirement and we need writeable output
|
| 435 |
+
# Here we only use list of views before copy to desination
|
| 436 |
+
# so it is more efficient than broadcasting
|
| 437 |
+
y_frames = np.array(
|
| 438 |
+
[wav[_stride : _stride + win_length] for _stride in range(0, hop_length * n_batch, hop_length)],
|
| 439 |
+
dtype=np.float32,
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
# Spec 2: SpeechLib applies preemphasis within each batch
|
| 443 |
+
y_frames_prev = np.roll(y_frames, 1, axis=1)
|
| 444 |
+
y_frames_prev[:, 0] = y_frames_prev[:, 1]
|
| 445 |
+
y_frames = (y_frames - preemphasis * y_frames_prev) * 32768
|
| 446 |
+
|
| 447 |
+
S = np.fft.rfft(fft_window * y_frames, n=n_fft, axis=1).astype(np.complex64)
|
| 448 |
+
|
| 449 |
+
if fs == 8000:
|
| 450 |
+
# Need to pad the output to look like 16 kHz data but with zeros in
|
| 451 |
+
# the 4 to 8 kHz bins.
|
| 452 |
+
frames, bins = S.shape
|
| 453 |
+
padarray = np.zeros((frames, bins))
|
| 454 |
+
S = np.concatenate((S[:, 0:-1], padarray), axis=1) # Nyquist bin gets set to zero
|
| 455 |
+
|
| 456 |
+
spec = np.abs(S).astype(np.float32)
|
| 457 |
+
return spec
|
| 458 |
+
|
| 459 |
+
def _extract_features(self, wav, fs):
|
| 460 |
+
"""Extract log filterbank features from waveform.
|
| 461 |
+
Args:
|
| 462 |
+
wav (1D array): waveform of the input
|
| 463 |
+
fs (int): sampling rate of the waveform, 16000 or 8000.
|
| 464 |
+
If fs=8000, the waveform will be resampled to 16000Hz.
|
| 465 |
+
Output:
|
| 466 |
+
log_fbank (2D array): a TxD matrix of log Mel filterbank features.
|
| 467 |
+
D=80, and T is the number of frames.
|
| 468 |
+
"""
|
| 469 |
+
spec = self._extract_spectrogram(wav, fs)
|
| 470 |
+
spec_power = spec**2
|
| 471 |
+
|
| 472 |
+
fbank_power = np.clip(spec_power.dot(self._mel), 1.0, None)
|
| 473 |
+
log_fbank = np.log(fbank_power).astype(np.float32)
|
| 474 |
+
|
| 475 |
+
return log_fbank
|
| 476 |
+
|
| 477 |
+
def _compute_audio_embed_size(self, audio_frames):
|
| 478 |
+
integer = audio_frames // self.compression_rate
|
| 479 |
+
remainder = audio_frames % self.compression_rate
|
| 480 |
+
|
| 481 |
+
result = integer if remainder == 0 else integer + 1
|
| 482 |
+
|
| 483 |
+
integer = result // self.qformer_compression_rate
|
| 484 |
+
remainder = result % self.qformer_compression_rate
|
| 485 |
+
result = integer if remainder == 0 else integer + 1 # qformer compression
|
| 486 |
+
|
| 487 |
+
return result
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
class Phi4MMProcessor(ProcessorMixin):
|
| 491 |
+
r"""
|
| 492 |
+
Constructs a Phi4MM processor which raps an image processor, a audio processor, and a GPT tokenizer into a single processor.
|
| 493 |
+
|
| 494 |
+
[`Phi4MMProcessor`] offers all the functionalities of [`Phi4MMImageProcessor`] and [`GPT2Tokenizer`]. See the
|
| 495 |
+
[`~Phi4MMProcessor.__call__`] and [`~Phi4MMProcessor.decode`] for more information.
|
| 496 |
+
|
| 497 |
+
Args:
|
| 498 |
+
image_processor ([`Phi4MMImageProcessor`], *optional*):
|
| 499 |
+
The image processor is a required input.
|
| 500 |
+
tokenizer ([`GPT2Tokenizer`], *optional*):
|
| 501 |
+
The tokenizer is a required input.
|
| 502 |
+
"""
|
| 503 |
+
|
| 504 |
+
attributes = ["image_processor", "audio_processor", "tokenizer"]
|
| 505 |
+
tokenizer_class = "GPT2TokenizerFast"
|
| 506 |
+
image_processor_class = "AutoImageProcessor" # Phi4MMImageProcessor will be registered later
|
| 507 |
+
audio_processor_class = "AutoFeatureExtractor" # Phi4MMAudioFeatureExtractor will be registered later
|
| 508 |
+
|
| 509 |
+
def __init__(self, image_processor, audio_processor, tokenizer):
|
| 510 |
+
self.image_processor = image_processor
|
| 511 |
+
self.audio_processor = audio_processor
|
| 512 |
+
self.tokenizer = tokenizer
|
| 513 |
+
|
| 514 |
+
def __call__(
|
| 515 |
+
self,
|
| 516 |
+
text: Union[TextInput, List[TextInput]],
|
| 517 |
+
images: Optional[ImageInput] = None,
|
| 518 |
+
audios: Optional[AudioInputs] = None,
|
| 519 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
| 520 |
+
truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
|
| 521 |
+
max_length=None,
|
| 522 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
| 523 |
+
) -> BatchFeature:
|
| 524 |
+
"""
|
| 525 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forards the `text`
|
| 526 |
+
and `kwargs` arguments to GPT2Tokenizer's [`~GPT2Tokenizer.__call__`] if `text` is not `None` to encode
|
| 527 |
+
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
| 528 |
+
Phi4MMImageProcessor's [`~Phi4MMImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
| 529 |
+
of the above two methods for more information.
|
| 530 |
+
|
| 531 |
+
Args:
|
| 532 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
| 533 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
| 534 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
| 535 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
| 536 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 537 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
| 538 |
+
tensor. Both channels-first and channels-last formats are supported.
|
| 539 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
| 540 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
| 541 |
+
index) among:
|
| 542 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 543 |
+
sequence if provided).
|
| 544 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
| 545 |
+
acceptable input length for the model if that argument is not provided.
|
| 546 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
| 547 |
+
lengths).
|
| 548 |
+
max_length (`int`, *optional*):
|
| 549 |
+
Maximum length of the returned list and optionally padding length (see above).
|
| 550 |
+
truncation (`bool`, *optional*):
|
| 551 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
| 552 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 553 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
| 554 |
+
|
| 555 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 556 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 557 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 558 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 559 |
+
|
| 560 |
+
Returns:
|
| 561 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
| 562 |
+
|
| 563 |
+
- **input_ids** -- List of token ids to be fed to a model.
|
| 564 |
+
- **input_image_embeds** -- Pixel values to be fed to a model.
|
| 565 |
+
- **image_sizes** -- List of tuples specifying the size of each image in `input_image_embeds`.
|
| 566 |
+
- **image_attention_mask** -- List of attention masks for each image in `input_image_embeds`.
|
| 567 |
+
- **input_audio_embeds** -- Audio embeddings to be fed to a model.
|
| 568 |
+
- **audio_embed_sizes** -- List of integers specifying the size of each audio in `input_audio_embeds`.
|
| 569 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
|
| 570 |
+
"""
|
| 571 |
+
image_inputs = self.image_processor(images, return_tensors=return_tensors) if images is not None else {}
|
| 572 |
+
audio_inputs = self.audio_processor(audios, return_tensors=return_tensors) if audios is not None else {}
|
| 573 |
+
inputs = self._convert_images_audios_text_to_inputs(
|
| 574 |
+
image_inputs,
|
| 575 |
+
audio_inputs,
|
| 576 |
+
text,
|
| 577 |
+
padding=padding,
|
| 578 |
+
truncation=truncation,
|
| 579 |
+
max_length=max_length,
|
| 580 |
+
return_tensors=return_tensors,
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
# idenfity the input mode
|
| 584 |
+
if len(image_inputs) > 0 and len(audio_inputs) > 0:
|
| 585 |
+
input_mode = InputMode.VISION_SPEECH
|
| 586 |
+
elif len(image_inputs) > 0:
|
| 587 |
+
input_mode = InputMode.VISION
|
| 588 |
+
elif len(audio_inputs) > 0:
|
| 589 |
+
input_mode = InputMode.SPEECH
|
| 590 |
+
else:
|
| 591 |
+
input_mode = InputMode.LANGUAGE
|
| 592 |
+
inputs["input_mode"] = torch.tensor([input_mode.value], dtype=torch.long)
|
| 593 |
+
|
| 594 |
+
return inputs
|
| 595 |
+
|
| 596 |
+
@property
|
| 597 |
+
def special_image_token_id(self):
|
| 598 |
+
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
| 599 |
+
|
| 600 |
+
def get_special_image_token_id(self):
|
| 601 |
+
return self.tokenizer.convert_tokens_to_ids(self.special_image_token)
|
| 602 |
+
|
| 603 |
+
@property
|
| 604 |
+
def chat_template(self):
|
| 605 |
+
return self.tokenizer.chat_template
|
| 606 |
+
|
| 607 |
+
def _convert_images_audios_text_to_inputs(
|
| 608 |
+
self, images, audios, text, padding=False, truncation=None, max_length=None, return_tensors=None
|
| 609 |
+
):
|
| 610 |
+
# prepare image id to image input ids
|
| 611 |
+
if len(images) > 0:
|
| 612 |
+
input_image_embeds = images["input_image_embeds"]
|
| 613 |
+
image_sizes = images["image_sizes"]
|
| 614 |
+
image_attention_mask = images["image_attention_mask"]
|
| 615 |
+
num_img_tokens = images['num_img_tokens']
|
| 616 |
+
else:
|
| 617 |
+
input_image_embeds = torch.tensor([])
|
| 618 |
+
image_sizes = torch.tensor([])
|
| 619 |
+
image_attention_mask = torch.tensor([])
|
| 620 |
+
num_img_tokens = []
|
| 621 |
+
|
| 622 |
+
# prepare audio id to audio input ids
|
| 623 |
+
if len(audios) > 0:
|
| 624 |
+
input_audio_embeds = audios["input_audio_embeds"]
|
| 625 |
+
audio_embed_sizes = audios["audio_embed_sizes"]
|
| 626 |
+
audio_attention_mask = audios.get("audio_attention_mask", None)
|
| 627 |
+
else:
|
| 628 |
+
input_audio_embeds = torch.tensor([])
|
| 629 |
+
audio_embed_sizes = torch.tensor([])
|
| 630 |
+
audio_attention_mask = None
|
| 631 |
+
|
| 632 |
+
# Replace certain special tokens for compatibility
|
| 633 |
+
# Ref: https://stackoverflow.com/questions/11475885/python-replace-regex
|
| 634 |
+
if isinstance(text, str):
|
| 635 |
+
text = [text]
|
| 636 |
+
assert isinstance(text, list)
|
| 637 |
+
processed_text = [re.sub(_COMPATIBLE_IMAGE_SPECIAL_TOKEN_PATTERN, _IMAGE_SPECIAL_TOKEN, t) for t in text]
|
| 638 |
+
processed_text = [re.sub(_COMPATIBLE_AUDIO_SPECIAL_TOKEN_PATTERN, _AUDIO_SPECIAL_TOKEN, t) for t in processed_text]
|
| 639 |
+
|
| 640 |
+
input_ids_list = [self.tokenizer(t).input_ids for t in processed_text]
|
| 641 |
+
|
| 642 |
+
img_cnt, audio_cnt = 0, 0 # only needed for later assertion
|
| 643 |
+
image_token_count_iter = iter(num_img_tokens)
|
| 644 |
+
audio_embed_size_iter = iter(audio_embed_sizes.tolist())
|
| 645 |
+
new_input_ids_list = []
|
| 646 |
+
for input_ids in input_ids_list:
|
| 647 |
+
i = 0
|
| 648 |
+
while i < len(input_ids):
|
| 649 |
+
token_id = input_ids[i]
|
| 650 |
+
if token_id == _AUDIO_SPECIAL_TOKEN_ID:
|
| 651 |
+
token_count = next(audio_embed_size_iter)
|
| 652 |
+
audio_cnt += 1
|
| 653 |
+
elif token_id == _IMAGE_SPECIAL_TOKEN_ID:
|
| 654 |
+
token_count = next(image_token_count_iter)
|
| 655 |
+
img_cnt += 1
|
| 656 |
+
else:
|
| 657 |
+
i += 1
|
| 658 |
+
continue
|
| 659 |
+
tokens = [token_id] * token_count
|
| 660 |
+
input_ids = input_ids[:i] + tokens + input_ids[i + 1:]
|
| 661 |
+
i += token_count
|
| 662 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
| 663 |
+
new_input_ids_list.append(input_ids)
|
| 664 |
+
lengths = torch.tensor([len(input_ids) for input_ids in new_input_ids_list])
|
| 665 |
+
max_len = lengths.max()
|
| 666 |
+
input_ids = input_ids.new_full((len(new_input_ids_list), max_len), self.tokenizer.pad_token_id)
|
| 667 |
+
# batched inference requires left padding
|
| 668 |
+
for i in range(len(new_input_ids_list)):
|
| 669 |
+
input_ids[i, max_len - len(new_input_ids_list[i]):] = new_input_ids_list[i]
|
| 670 |
+
|
| 671 |
+
# If the below assertion fails, it might be that input pure-text
|
| 672 |
+
# messages contain image/audio special tokens literally
|
| 673 |
+
# (<|endoftext10|>, <|endoftext11|>).
|
| 674 |
+
assert (
|
| 675 |
+
img_cnt == len(num_img_tokens)
|
| 676 |
+
), (
|
| 677 |
+
f"Number of image tokens in prompt_token_ids ({img_cnt}) "
|
| 678 |
+
f"does not match number of images ({len(num_img_tokens)})"
|
| 679 |
+
)
|
| 680 |
+
assert (
|
| 681 |
+
audio_cnt == len(audio_embed_sizes)
|
| 682 |
+
), (
|
| 683 |
+
f"Number of audio tokens in prompt_token_ids ({audio_cnt}) "
|
| 684 |
+
f"does not match number of audios ({len(audio_embed_sizes)})"
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
# prepare attention mask
|
| 688 |
+
seq_range = torch.arange(max_len - 1, -1, -1)
|
| 689 |
+
attention_mask = seq_range.unsqueeze(0) < lengths.unsqueeze(1)
|
| 690 |
+
|
| 691 |
+
# prepare batch feature
|
| 692 |
+
data = {
|
| 693 |
+
"input_ids": input_ids,
|
| 694 |
+
"input_image_embeds": input_image_embeds,
|
| 695 |
+
"image_sizes": image_sizes,
|
| 696 |
+
"image_attention_mask": image_attention_mask,
|
| 697 |
+
"input_audio_embeds": input_audio_embeds,
|
| 698 |
+
"audio_embed_sizes": audio_embed_sizes,
|
| 699 |
+
"audio_attention_mask": audio_attention_mask,
|
| 700 |
+
"attention_mask": attention_mask,
|
| 701 |
+
}
|
| 702 |
+
|
| 703 |
+
return BatchFeature(
|
| 704 |
+
data=data
|
| 705 |
+
)
|
| 706 |
+
|
| 707 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
| 708 |
+
def batch_decode(self, *args, **kwargs):
|
| 709 |
+
"""
|
| 710 |
+
This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
| 711 |
+
refer to the docstring of this method for more information.
|
| 712 |
+
"""
|
| 713 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
| 714 |
+
|
| 715 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
| 716 |
+
def decode(self, *args, **kwargs):
|
| 717 |
+
"""
|
| 718 |
+
This method forwards all its arguments to GPT2Tokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
|
| 719 |
+
the docstring of this method for more information.
|
| 720 |
+
"""
|
| 721 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 722 |
+
|
| 723 |
+
@property
|
| 724 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
| 725 |
+
def model_input_names(self):
|
| 726 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
| 727 |
+
image_processor_input_names = self.image_processor.model_input_names
|
| 728 |
+
audio_processor_input_names = self.audio_processor.model_input_names
|
| 729 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + audio_processor_input_names))
|
| 730 |
+
|
| 731 |
+
|
| 732 |
+
AutoImageProcessor.register("Phi4MMImageProcessor", Phi4MMImageProcessor)
|
| 733 |
+
AutoFeatureExtractor.register("Phi4MMAudioFeatureExtractor", Phi4MMAudioFeatureExtractor)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|endoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<|endoftext|>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
speech_conformer_encoder.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4c1b9f641d4f8b7247b8d5007dd3b6a9f6a87cb5123134fe0d326f14d10c0585
|
| 3 |
+
size 15524479
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"199999": {
|
| 5 |
+
"content": "<|endoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"200010": {
|
| 13 |
+
"content": "<|endoftext10|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"200011": {
|
| 21 |
+
"content": "<|endoftext11|>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"200018": {
|
| 29 |
+
"content": "<|endofprompt|>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"200019": {
|
| 37 |
+
"content": "<|assistant|>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": true,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"200020": {
|
| 45 |
+
"content": "<|end|>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": true,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"200021": {
|
| 53 |
+
"content": "<|user|>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": true,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"200022": {
|
| 61 |
+
"content": "<|system|>",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": true,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"200023": {
|
| 69 |
+
"content": "<|tool|>",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": true,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": false
|
| 75 |
+
},
|
| 76 |
+
"200024": {
|
| 77 |
+
"content": "<|/tool|>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": true,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": false
|
| 83 |
+
},
|
| 84 |
+
"200025": {
|
| 85 |
+
"content": "<|tool_call|>",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": true,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": false
|
| 91 |
+
},
|
| 92 |
+
"200026": {
|
| 93 |
+
"content": "<|/tool_call|>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": true,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": false
|
| 99 |
+
},
|
| 100 |
+
"200027": {
|
| 101 |
+
"content": "<|tool_response|>",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": true,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": false
|
| 107 |
+
},
|
| 108 |
+
"200028": {
|
| 109 |
+
"content": "<|tag|>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": true,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": true
|
| 115 |
+
}
|
| 116 |
+
},
|
| 117 |
+
"bos_token": "<|endoftext|>",
|
| 118 |
+
"chat_template": "{% for message in messages %}{% if message['role'] == 'system' and 'tools' in message and message['tools'] is not none %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|tool|>' + message['tools'] + '<|/tool|>' + '<|end|>' }}{% else %}{{ '<|' + message['role'] + '|>' + message['content'] + '<|end|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>' }}{% else %}{{ eos_token }}{% endif %}",
|
| 119 |
+
"clean_up_tokenization_spaces": false,
|
| 120 |
+
"eos_token": "<|endoftext|>",
|
| 121 |
+
"extra_special_tokens": {},
|
| 122 |
+
"model_max_length": 131072,
|
| 123 |
+
"pad_token": "<|endoftext|>",
|
| 124 |
+
"processor_class": "Phi4MMProcessor",
|
| 125 |
+
"tokenizer_class": "GPT2Tokenizer",
|
| 126 |
+
"unk_token": "<|endoftext|>"
|
| 127 |
+
}
|
vision_siglip_navit.py
ADDED
|
@@ -0,0 +1,1717 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
""" Siglip model configuration"""
|
| 16 |
+
|
| 17 |
+
import os
|
| 18 |
+
from typing import Union
|
| 19 |
+
|
| 20 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 21 |
+
from transformers.utils import logging
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
logger = logging.get_logger(__name__)
|
| 25 |
+
|
| 26 |
+
SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 27 |
+
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json",
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class SiglipTextConfig(PretrainedConfig):
|
| 32 |
+
r"""
|
| 33 |
+
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a
|
| 34 |
+
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
| 35 |
+
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip
|
| 36 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
| 37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 38 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 39 |
+
Args:
|
| 40 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 41 |
+
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by
|
| 42 |
+
the `inputs_ids` passed when calling [`SiglipModel`].
|
| 43 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 44 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 45 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 46 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 47 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 48 |
+
Number of hidden layers in the Transformer encoder.
|
| 49 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 51 |
+
max_position_embeddings (`int`, *optional*, defaults to 64):
|
| 52 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 53 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 54 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
| 55 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 56 |
+
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
| 57 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 58 |
+
The epsilon used by the layer normalization layers.
|
| 59 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 60 |
+
The dropout ratio for the attention probabilities.
|
| 61 |
+
pad_token_id (`int`, *optional*, defaults to 1):
|
| 62 |
+
The id of the padding token in the vocabulary.
|
| 63 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
| 64 |
+
The id of the beginning-of-sequence token in the vocabulary.
|
| 65 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
| 66 |
+
The id of the end-of-sequence token in the vocabulary.
|
| 67 |
+
Example:
|
| 68 |
+
```python
|
| 69 |
+
>>> from transformers import SiglipTextConfig, SiglipTextModel
|
| 70 |
+
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration
|
| 71 |
+
>>> configuration = SiglipTextConfig()
|
| 72 |
+
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
| 73 |
+
>>> model = SiglipTextModel(configuration)
|
| 74 |
+
>>> # Accessing the model configuration
|
| 75 |
+
>>> configuration = model.config
|
| 76 |
+
```"""
|
| 77 |
+
|
| 78 |
+
model_type = "siglip_text_model"
|
| 79 |
+
|
| 80 |
+
def __init__(
|
| 81 |
+
self,
|
| 82 |
+
vocab_size=32000,
|
| 83 |
+
hidden_size=768,
|
| 84 |
+
intermediate_size=3072,
|
| 85 |
+
num_hidden_layers=12,
|
| 86 |
+
num_attention_heads=12,
|
| 87 |
+
max_position_embeddings=64,
|
| 88 |
+
hidden_act="gelu_pytorch_tanh",
|
| 89 |
+
layer_norm_eps=1e-6,
|
| 90 |
+
attention_dropout=0.0,
|
| 91 |
+
# This differs from `CLIPTokenizer`'s default and from openai/siglip
|
| 92 |
+
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538
|
| 93 |
+
pad_token_id=1,
|
| 94 |
+
bos_token_id=49406,
|
| 95 |
+
eos_token_id=49407,
|
| 96 |
+
_flash_attn_2_enabled=True,
|
| 97 |
+
**kwargs,
|
| 98 |
+
):
|
| 99 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
| 100 |
+
|
| 101 |
+
self.vocab_size = vocab_size
|
| 102 |
+
self.hidden_size = hidden_size
|
| 103 |
+
self.intermediate_size = intermediate_size
|
| 104 |
+
self.num_hidden_layers = num_hidden_layers
|
| 105 |
+
self.num_attention_heads = num_attention_heads
|
| 106 |
+
self.max_position_embeddings = max_position_embeddings
|
| 107 |
+
self.layer_norm_eps = layer_norm_eps
|
| 108 |
+
self.hidden_act = hidden_act
|
| 109 |
+
self.attention_dropout = attention_dropout
|
| 110 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
| 111 |
+
|
| 112 |
+
@classmethod
|
| 113 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 114 |
+
cls._set_token_in_kwargs(kwargs)
|
| 115 |
+
|
| 116 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 117 |
+
|
| 118 |
+
# get the text config dict if we are loading from SiglipConfig
|
| 119 |
+
if config_dict.get("model_type") == "siglip":
|
| 120 |
+
config_dict = config_dict["text_config"]
|
| 121 |
+
|
| 122 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 123 |
+
logger.warning(
|
| 124 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 125 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class SiglipVisionConfig(PretrainedConfig):
|
| 132 |
+
r"""
|
| 133 |
+
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a
|
| 134 |
+
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
| 135 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip
|
| 136 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
| 137 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 138 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 139 |
+
Args:
|
| 140 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 141 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 142 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 143 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 144 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 145 |
+
Number of hidden layers in the Transformer encoder.
|
| 146 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 147 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 148 |
+
num_channels (`int`, *optional*, defaults to 3):
|
| 149 |
+
Number of channels in the input images.
|
| 150 |
+
image_size (`int`, *optional*, defaults to 224):
|
| 151 |
+
The size (resolution) of each image.
|
| 152 |
+
patch_size (`int`, *optional*, defaults to 16):
|
| 153 |
+
The size (resolution) of each patch.
|
| 154 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
| 155 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 156 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
| 157 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 158 |
+
The epsilon used by the layer normalization layers.
|
| 159 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 160 |
+
The dropout ratio for the attention probabilities.
|
| 161 |
+
Example:
|
| 162 |
+
```python
|
| 163 |
+
>>> from transformers import SiglipVisionConfig, SiglipVisionModel
|
| 164 |
+
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration
|
| 165 |
+
>>> configuration = SiglipVisionConfig()
|
| 166 |
+
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
| 167 |
+
>>> model = SiglipVisionModel(configuration)
|
| 168 |
+
>>> # Accessing the model configuration
|
| 169 |
+
>>> configuration = model.config
|
| 170 |
+
```"""
|
| 171 |
+
|
| 172 |
+
model_type = "siglip_vision_model"
|
| 173 |
+
|
| 174 |
+
def __init__(
|
| 175 |
+
self,
|
| 176 |
+
hidden_size=768,
|
| 177 |
+
intermediate_size=3072,
|
| 178 |
+
num_hidden_layers=12,
|
| 179 |
+
num_attention_heads=12,
|
| 180 |
+
num_channels=3,
|
| 181 |
+
image_size=224,
|
| 182 |
+
patch_size=16,
|
| 183 |
+
hidden_act="gelu_pytorch_tanh",
|
| 184 |
+
layer_norm_eps=1e-6,
|
| 185 |
+
attention_dropout=0.0,
|
| 186 |
+
_flash_attn_2_enabled=True,
|
| 187 |
+
**kwargs,
|
| 188 |
+
):
|
| 189 |
+
super().__init__(**kwargs)
|
| 190 |
+
|
| 191 |
+
self.hidden_size = hidden_size
|
| 192 |
+
self.intermediate_size = intermediate_size
|
| 193 |
+
self.num_hidden_layers = num_hidden_layers
|
| 194 |
+
self.num_attention_heads = num_attention_heads
|
| 195 |
+
self.num_channels = num_channels
|
| 196 |
+
self.patch_size = patch_size
|
| 197 |
+
self.image_size = image_size
|
| 198 |
+
self.attention_dropout = attention_dropout
|
| 199 |
+
self.layer_norm_eps = layer_norm_eps
|
| 200 |
+
self.hidden_act = hidden_act
|
| 201 |
+
self._flash_attn_2_enabled = _flash_attn_2_enabled
|
| 202 |
+
|
| 203 |
+
@classmethod
|
| 204 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
| 205 |
+
cls._set_token_in_kwargs(kwargs)
|
| 206 |
+
|
| 207 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
| 208 |
+
|
| 209 |
+
# get the vision config dict if we are loading from SiglipConfig
|
| 210 |
+
if config_dict.get("model_type") == "siglip":
|
| 211 |
+
config_dict = config_dict["vision_config"]
|
| 212 |
+
|
| 213 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
| 214 |
+
logger.warning(
|
| 215 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
| 216 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
return cls.from_dict(config_dict, **kwargs)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
class SiglipConfig(PretrainedConfig):
|
| 223 |
+
r"""
|
| 224 |
+
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to
|
| 225 |
+
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs.
|
| 226 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip
|
| 227 |
+
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture.
|
| 228 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 229 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 230 |
+
Args:
|
| 231 |
+
text_config (`dict`, *optional*):
|
| 232 |
+
Dictionary of configuration options used to initialize [`SiglipTextConfig`].
|
| 233 |
+
vision_config (`dict`, *optional*):
|
| 234 |
+
Dictionary of configuration options used to initialize [`SiglipVisionConfig`].
|
| 235 |
+
kwargs (*optional*):
|
| 236 |
+
Dictionary of keyword arguments.
|
| 237 |
+
Example:
|
| 238 |
+
```python
|
| 239 |
+
>>> from transformers import SiglipConfig, SiglipModel
|
| 240 |
+
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration
|
| 241 |
+
>>> configuration = SiglipConfig()
|
| 242 |
+
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration
|
| 243 |
+
>>> model = SiglipModel(configuration)
|
| 244 |
+
>>> # Accessing the model configuration
|
| 245 |
+
>>> configuration = model.config
|
| 246 |
+
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig
|
| 247 |
+
>>> from transformers import SiglipTextConfig, SiglipVisionConfig
|
| 248 |
+
>>> # Initializing a SiglipText and SiglipVision configuration
|
| 249 |
+
>>> config_text = SiglipTextConfig()
|
| 250 |
+
>>> config_vision = SiglipVisionConfig()
|
| 251 |
+
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision)
|
| 252 |
+
```"""
|
| 253 |
+
|
| 254 |
+
model_type = "siglip"
|
| 255 |
+
|
| 256 |
+
def __init__(self, text_config=None, vision_config=None, **kwargs):
|
| 257 |
+
super().__init__(**kwargs)
|
| 258 |
+
|
| 259 |
+
if text_config is None:
|
| 260 |
+
text_config = {}
|
| 261 |
+
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.")
|
| 262 |
+
|
| 263 |
+
if vision_config is None:
|
| 264 |
+
vision_config = {}
|
| 265 |
+
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.")
|
| 266 |
+
|
| 267 |
+
self.text_config = SiglipTextConfig(**text_config)
|
| 268 |
+
self.vision_config = SiglipVisionConfig(**vision_config)
|
| 269 |
+
|
| 270 |
+
self.initializer_factor = 1.0
|
| 271 |
+
|
| 272 |
+
@classmethod
|
| 273 |
+
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs):
|
| 274 |
+
r"""
|
| 275 |
+
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision
|
| 276 |
+
model configuration.
|
| 277 |
+
Returns:
|
| 278 |
+
[`SiglipConfig`]: An instance of a configuration object
|
| 279 |
+
"""
|
| 280 |
+
|
| 281 |
+
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
| 282 |
+
|
| 283 |
+
# coding=utf-8
|
| 284 |
+
# Copyright 2024 Google AI and The HuggingFace Team. All rights reserved.
|
| 285 |
+
#
|
| 286 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 287 |
+
# you may not use this file except in compliance with the License.
|
| 288 |
+
# You may obtain a copy of the License at
|
| 289 |
+
#
|
| 290 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 291 |
+
#
|
| 292 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 293 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 294 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 295 |
+
# See the License for the specific language governing permissions and
|
| 296 |
+
# limitations under the License.
|
| 297 |
+
""" PyTorch Siglip model."""
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
import math
|
| 301 |
+
import warnings
|
| 302 |
+
from dataclasses import dataclass
|
| 303 |
+
from typing import Any, Optional, Tuple, Union
|
| 304 |
+
|
| 305 |
+
import numpy as np
|
| 306 |
+
import torch
|
| 307 |
+
import torch.nn.functional as F
|
| 308 |
+
import torch.utils.checkpoint
|
| 309 |
+
from torch import nn
|
| 310 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
| 311 |
+
|
| 312 |
+
from transformers.activations import ACT2FN
|
| 313 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask
|
| 314 |
+
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
|
| 315 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 316 |
+
from transformers.utils import (
|
| 317 |
+
ModelOutput,
|
| 318 |
+
add_start_docstrings,
|
| 319 |
+
add_start_docstrings_to_model_forward,
|
| 320 |
+
is_flash_attn_2_available,
|
| 321 |
+
logging,
|
| 322 |
+
replace_return_docstrings,
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
logger = logging.get_logger(__name__)
|
| 326 |
+
|
| 327 |
+
_CHECKPOINT_FOR_DOC = "google/siglip-base-patch16-224"
|
| 328 |
+
|
| 329 |
+
SIGLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 330 |
+
"google/siglip-base-patch16-224",
|
| 331 |
+
# See all SigLIP models at https://huggingface.co/models?filter=siglip
|
| 332 |
+
]
|
| 333 |
+
|
| 334 |
+
if is_flash_attn_2_available():
|
| 335 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 336 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 340 |
+
def _get_unpad_data(attention_mask):
|
| 341 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 342 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 343 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 344 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
| 345 |
+
return (
|
| 346 |
+
indices,
|
| 347 |
+
cu_seqlens,
|
| 348 |
+
max_seqlen_in_batch,
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def _trunc_normal_(tensor, mean, std, a, b):
|
| 353 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 354 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 355 |
+
def norm_cdf(x):
|
| 356 |
+
# Computes standard normal cumulative distribution function
|
| 357 |
+
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
|
| 358 |
+
|
| 359 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 360 |
+
warnings.warn(
|
| 361 |
+
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 362 |
+
"The distribution of values may be incorrect.",
|
| 363 |
+
stacklevel=2,
|
| 364 |
+
)
|
| 365 |
+
|
| 366 |
+
# Values are generated by using a truncated uniform distribution and
|
| 367 |
+
# then using the inverse CDF for the normal distribution.
|
| 368 |
+
# Get upper and lower cdf values
|
| 369 |
+
l = norm_cdf((a - mean) / std)
|
| 370 |
+
u = norm_cdf((b - mean) / std)
|
| 371 |
+
|
| 372 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 373 |
+
# [2l-1, 2u-1].
|
| 374 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 375 |
+
|
| 376 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 377 |
+
# standard normal
|
| 378 |
+
if tensor.dtype in [torch.float16, torch.bfloat16]:
|
| 379 |
+
# The `erfinv_` op is not (yet?) defined in float16+cpu, bfloat16+gpu
|
| 380 |
+
og_dtype = tensor.dtype
|
| 381 |
+
tensor = tensor.to(torch.float32)
|
| 382 |
+
tensor.erfinv_()
|
| 383 |
+
tensor = tensor.to(og_dtype)
|
| 384 |
+
else:
|
| 385 |
+
tensor.erfinv_()
|
| 386 |
+
|
| 387 |
+
# Transform to proper mean, std
|
| 388 |
+
tensor.mul_(std * math.sqrt(2.0))
|
| 389 |
+
tensor.add_(mean)
|
| 390 |
+
|
| 391 |
+
# Clamp to ensure it's in the proper range
|
| 392 |
+
if tensor.dtype == torch.float16:
|
| 393 |
+
# The `clamp_` op is not (yet?) defined in float16+cpu
|
| 394 |
+
tensor = tensor.to(torch.float32)
|
| 395 |
+
tensor.clamp_(min=a, max=b)
|
| 396 |
+
tensor = tensor.to(torch.float16)
|
| 397 |
+
else:
|
| 398 |
+
tensor.clamp_(min=a, max=b)
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def trunc_normal_tf_(
|
| 402 |
+
tensor: torch.Tensor, mean: float = 0.0, std: float = 1.0, a: float = -2.0, b: float = 2.0
|
| 403 |
+
) -> torch.Tensor:
|
| 404 |
+
"""Fills the input Tensor with values drawn from a truncated
|
| 405 |
+
normal distribution. The values are effectively drawn from the
|
| 406 |
+
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 407 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 408 |
+
the bounds. The method used for generating the random values works
|
| 409 |
+
best when :math:`a \\leq \text{mean} \\leq b`.
|
| 410 |
+
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
|
| 411 |
+
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
|
| 412 |
+
and the result is subsquently scaled and shifted by the mean and std args.
|
| 413 |
+
Args:
|
| 414 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 415 |
+
mean: the mean of the normal distribution
|
| 416 |
+
std: the standard deviation of the normal distribution
|
| 417 |
+
a: the minimum cutoff value
|
| 418 |
+
b: the maximum cutoff value
|
| 419 |
+
"""
|
| 420 |
+
with torch.no_grad():
|
| 421 |
+
_trunc_normal_(tensor, 0, 1.0, a, b)
|
| 422 |
+
tensor.mul_(std).add_(mean)
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
|
| 426 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
| 427 |
+
if mode == "fan_in":
|
| 428 |
+
denom = fan_in
|
| 429 |
+
elif mode == "fan_out":
|
| 430 |
+
denom = fan_out
|
| 431 |
+
elif mode == "fan_avg":
|
| 432 |
+
denom = (fan_in + fan_out) / 2
|
| 433 |
+
|
| 434 |
+
variance = scale / denom
|
| 435 |
+
|
| 436 |
+
if distribution == "truncated_normal":
|
| 437 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
| 438 |
+
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
|
| 439 |
+
elif distribution == "normal":
|
| 440 |
+
with torch.no_grad():
|
| 441 |
+
tensor.normal_(std=math.sqrt(variance))
|
| 442 |
+
elif distribution == "uniform":
|
| 443 |
+
bound = math.sqrt(3 * variance)
|
| 444 |
+
with torch.no_grad():
|
| 445 |
+
tensor.uniform_(-bound, bound)
|
| 446 |
+
else:
|
| 447 |
+
raise ValueError(f"invalid distribution {distribution}")
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
def lecun_normal_(tensor):
|
| 451 |
+
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
def default_flax_embed_init(tensor):
|
| 455 |
+
variance_scaling_(tensor, mode="fan_in", distribution="normal")
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
@dataclass
|
| 459 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
|
| 460 |
+
class SiglipVisionModelOutput(ModelOutput):
|
| 461 |
+
"""
|
| 462 |
+
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
|
| 463 |
+
Args:
|
| 464 |
+
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
| 465 |
+
The image embeddings obtained by applying the projection layer to the pooler_output.
|
| 466 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 467 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 468 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 469 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 470 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 471 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 472 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 473 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 474 |
+
sequence_length)`.
|
| 475 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 476 |
+
heads.
|
| 477 |
+
"""
|
| 478 |
+
|
| 479 |
+
image_embeds: Optional[torch.FloatTensor] = None
|
| 480 |
+
last_hidden_state: torch.FloatTensor = None
|
| 481 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 482 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 483 |
+
|
| 484 |
+
|
| 485 |
+
@dataclass
|
| 486 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextModelOutput with CLIP->Siglip
|
| 487 |
+
class SiglipTextModelOutput(ModelOutput):
|
| 488 |
+
"""
|
| 489 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
| 490 |
+
Args:
|
| 491 |
+
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
|
| 492 |
+
The text embeddings obtained by applying the projection layer to the pooler_output.
|
| 493 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 494 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
| 495 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
| 496 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
| 497 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
| 498 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
| 499 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
| 500 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
| 501 |
+
sequence_length)`.
|
| 502 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
| 503 |
+
heads.
|
| 504 |
+
"""
|
| 505 |
+
|
| 506 |
+
text_embeds: Optional[torch.FloatTensor] = None
|
| 507 |
+
last_hidden_state: torch.FloatTensor = None
|
| 508 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
| 509 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
@dataclass
|
| 513 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPOutput with CLIP->Siglip
|
| 514 |
+
class SiglipOutput(ModelOutput):
|
| 515 |
+
"""
|
| 516 |
+
Args:
|
| 517 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
|
| 518 |
+
Contrastive loss for image-text similarity.
|
| 519 |
+
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
|
| 520 |
+
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
|
| 521 |
+
similarity scores.
|
| 522 |
+
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
|
| 523 |
+
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
|
| 524 |
+
similarity scores.
|
| 525 |
+
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 526 |
+
The text embeddings obtained by applying the projection layer to the pooled output of [`SiglipTextModel`].
|
| 527 |
+
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
|
| 528 |
+
The image embeddings obtained by applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
| 529 |
+
text_model_output(`BaseModelOutputWithPooling`):
|
| 530 |
+
The output of the [`SiglipTextModel`].
|
| 531 |
+
vision_model_output(`BaseModelOutputWithPooling`):
|
| 532 |
+
The output of the [`SiglipVisionModel`].
|
| 533 |
+
"""
|
| 534 |
+
|
| 535 |
+
loss: Optional[torch.FloatTensor] = None
|
| 536 |
+
logits_per_image: torch.FloatTensor = None
|
| 537 |
+
logits_per_text: torch.FloatTensor = None
|
| 538 |
+
text_embeds: torch.FloatTensor = None
|
| 539 |
+
image_embeds: torch.FloatTensor = None
|
| 540 |
+
text_model_output: BaseModelOutputWithPooling = None
|
| 541 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
| 542 |
+
|
| 543 |
+
def to_tuple(self) -> Tuple[Any]:
|
| 544 |
+
return tuple(
|
| 545 |
+
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
|
| 546 |
+
for k in self.keys()
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
class SiglipVisionEmbeddings(nn.Module):
|
| 551 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 552 |
+
super().__init__()
|
| 553 |
+
self.config = config
|
| 554 |
+
self.embed_dim = config.hidden_size
|
| 555 |
+
self.image_size = config.image_size
|
| 556 |
+
self.patch_size = config.patch_size
|
| 557 |
+
|
| 558 |
+
self.patch_embedding = nn.Conv2d(
|
| 559 |
+
in_channels=config.num_channels,
|
| 560 |
+
out_channels=self.embed_dim,
|
| 561 |
+
kernel_size=self.patch_size,
|
| 562 |
+
stride=self.patch_size,
|
| 563 |
+
padding="valid",
|
| 564 |
+
)
|
| 565 |
+
|
| 566 |
+
self.num_patches_per_side = self.image_size // self.patch_size
|
| 567 |
+
self.num_patches = self.num_patches_per_side**2
|
| 568 |
+
self.num_positions = self.num_patches
|
| 569 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
| 570 |
+
|
| 571 |
+
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor:
|
| 572 |
+
batch_size = pixel_values.size(0)
|
| 573 |
+
|
| 574 |
+
patch_embeds = self.patch_embedding(pixel_values)
|
| 575 |
+
embeddings = patch_embeds.flatten(2).transpose(1, 2)
|
| 576 |
+
|
| 577 |
+
max_im_h, max_im_w = pixel_values.size(2), pixel_values.size(3)
|
| 578 |
+
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size
|
| 579 |
+
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side)
|
| 580 |
+
position_ids = torch.full(
|
| 581 |
+
size=(
|
| 582 |
+
batch_size,
|
| 583 |
+
max_nb_patches_h * max_nb_patches_w,
|
| 584 |
+
),
|
| 585 |
+
fill_value=0,
|
| 586 |
+
)
|
| 587 |
+
|
| 588 |
+
for batch_idx, p_attn_mask in enumerate(patch_attention_mask):
|
| 589 |
+
nb_patches_h = p_attn_mask[:, 0].sum()
|
| 590 |
+
nb_patches_w = p_attn_mask[0].sum()
|
| 591 |
+
|
| 592 |
+
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h)
|
| 593 |
+
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w)
|
| 594 |
+
|
| 595 |
+
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True)
|
| 596 |
+
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True)
|
| 597 |
+
|
| 598 |
+
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten()
|
| 599 |
+
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids
|
| 600 |
+
|
| 601 |
+
position_ids = position_ids.to(self.position_embedding.weight.device)
|
| 602 |
+
|
| 603 |
+
embeddings = embeddings + self.position_embedding(position_ids)
|
| 604 |
+
return embeddings
|
| 605 |
+
|
| 606 |
+
|
| 607 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->Siglip
|
| 608 |
+
class SiglipTextEmbeddings(nn.Module):
|
| 609 |
+
def __init__(self, config: SiglipTextConfig):
|
| 610 |
+
super().__init__()
|
| 611 |
+
embed_dim = config.hidden_size
|
| 612 |
+
|
| 613 |
+
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
|
| 614 |
+
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
|
| 615 |
+
|
| 616 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
| 617 |
+
self.register_buffer(
|
| 618 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
| 619 |
+
)
|
| 620 |
+
|
| 621 |
+
def forward(
|
| 622 |
+
self,
|
| 623 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 624 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 625 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 626 |
+
) -> torch.Tensor:
|
| 627 |
+
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
|
| 628 |
+
|
| 629 |
+
if position_ids is None:
|
| 630 |
+
position_ids = self.position_ids[:, :seq_length]
|
| 631 |
+
|
| 632 |
+
if inputs_embeds is None:
|
| 633 |
+
inputs_embeds = self.token_embedding(input_ids)
|
| 634 |
+
|
| 635 |
+
position_embeddings = self.position_embedding(position_ids)
|
| 636 |
+
embeddings = inputs_embeds + position_embeddings
|
| 637 |
+
|
| 638 |
+
return embeddings
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
class SiglipAttention(nn.Module):
|
| 642 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 643 |
+
|
| 644 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__
|
| 645 |
+
def __init__(self, config):
|
| 646 |
+
super().__init__()
|
| 647 |
+
self.config = config
|
| 648 |
+
self.embed_dim = config.hidden_size
|
| 649 |
+
self.num_heads = config.num_attention_heads
|
| 650 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 651 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 652 |
+
raise ValueError(
|
| 653 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 654 |
+
f" {self.num_heads})."
|
| 655 |
+
)
|
| 656 |
+
self.scale = self.head_dim**-0.5
|
| 657 |
+
self.dropout = config.attention_dropout
|
| 658 |
+
|
| 659 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 660 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 661 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 662 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
| 663 |
+
|
| 664 |
+
def forward(
|
| 665 |
+
self,
|
| 666 |
+
hidden_states: torch.Tensor,
|
| 667 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 668 |
+
output_attentions: Optional[bool] = False,
|
| 669 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 670 |
+
"""Input shape: Batch x Time x Channel"""
|
| 671 |
+
|
| 672 |
+
batch_size, q_len, _ = hidden_states.size()
|
| 673 |
+
|
| 674 |
+
query_states = self.q_proj(hidden_states)
|
| 675 |
+
key_states = self.k_proj(hidden_states)
|
| 676 |
+
value_states = self.v_proj(hidden_states)
|
| 677 |
+
|
| 678 |
+
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 679 |
+
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 680 |
+
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 681 |
+
|
| 682 |
+
k_v_seq_len = key_states.shape[-2]
|
| 683 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale
|
| 684 |
+
|
| 685 |
+
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len):
|
| 686 |
+
raise ValueError(
|
| 687 |
+
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is"
|
| 688 |
+
f" {attn_weights.size()}"
|
| 689 |
+
)
|
| 690 |
+
|
| 691 |
+
if attention_mask is not None:
|
| 692 |
+
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len):
|
| 693 |
+
raise ValueError(
|
| 694 |
+
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}"
|
| 695 |
+
)
|
| 696 |
+
attn_weights = attn_weights + attention_mask
|
| 697 |
+
|
| 698 |
+
# upcast attention to fp32
|
| 699 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 700 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
| 701 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 702 |
+
|
| 703 |
+
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim):
|
| 704 |
+
raise ValueError(
|
| 705 |
+
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is"
|
| 706 |
+
f" {attn_output.size()}"
|
| 707 |
+
)
|
| 708 |
+
|
| 709 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 710 |
+
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim)
|
| 711 |
+
|
| 712 |
+
attn_output = self.out_proj(attn_output)
|
| 713 |
+
|
| 714 |
+
return attn_output, attn_weights
|
| 715 |
+
|
| 716 |
+
|
| 717 |
+
class SiglipFlashAttention2(SiglipAttention):
|
| 718 |
+
"""
|
| 719 |
+
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
| 720 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
| 721 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
| 722 |
+
"""
|
| 723 |
+
|
| 724 |
+
def __init__(self, *args, **kwargs):
|
| 725 |
+
super().__init__(*args, **kwargs)
|
| 726 |
+
self.is_causal = False # Hack to make sure we don't use a causal mask
|
| 727 |
+
|
| 728 |
+
def forward(
|
| 729 |
+
self,
|
| 730 |
+
hidden_states: torch.Tensor,
|
| 731 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 732 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 733 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
| 734 |
+
output_attentions: bool = False,
|
| 735 |
+
use_cache: bool = False,
|
| 736 |
+
**kwargs,
|
| 737 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 738 |
+
output_attentions = False
|
| 739 |
+
|
| 740 |
+
bsz, q_len, _ = hidden_states.size()
|
| 741 |
+
|
| 742 |
+
query_states = self.q_proj(hidden_states)
|
| 743 |
+
key_states = self.k_proj(hidden_states)
|
| 744 |
+
value_states = self.v_proj(hidden_states)
|
| 745 |
+
|
| 746 |
+
# Flash attention requires the input to have the shape
|
| 747 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
| 748 |
+
# therefore we just need to keep the original shape
|
| 749 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 750 |
+
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 751 |
+
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 752 |
+
|
| 753 |
+
kv_seq_len = key_states.shape[-2]
|
| 754 |
+
if past_key_value is not None:
|
| 755 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
| 756 |
+
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 757 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 758 |
+
|
| 759 |
+
# if past_key_value is not None:
|
| 760 |
+
# cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
| 761 |
+
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 762 |
+
|
| 763 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 764 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 765 |
+
query_states = query_states.transpose(1, 2)
|
| 766 |
+
key_states = key_states.transpose(1, 2)
|
| 767 |
+
value_states = value_states.transpose(1, 2)
|
| 768 |
+
|
| 769 |
+
dropout_rate = self.dropout if self.training else 0.0
|
| 770 |
+
|
| 771 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 772 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 773 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 774 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 775 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
| 776 |
+
|
| 777 |
+
input_dtype = query_states.dtype
|
| 778 |
+
if input_dtype == torch.float32:
|
| 779 |
+
if torch.is_autocast_enabled():
|
| 780 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 781 |
+
# Handle the case where the model is quantized
|
| 782 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 783 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 784 |
+
else:
|
| 785 |
+
target_dtype = self.q_proj.weight.dtype
|
| 786 |
+
|
| 787 |
+
logger.warning_once(
|
| 788 |
+
"The input hidden states seems to be silently casted in float32, this might be related to the fact"
|
| 789 |
+
" you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 790 |
+
f" {target_dtype}."
|
| 791 |
+
)
|
| 792 |
+
|
| 793 |
+
query_states = query_states.to(target_dtype)
|
| 794 |
+
key_states = key_states.to(target_dtype)
|
| 795 |
+
value_states = value_states.to(target_dtype)
|
| 796 |
+
|
| 797 |
+
attn_output = self._flash_attention_forward(
|
| 798 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
| 799 |
+
)
|
| 800 |
+
|
| 801 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
|
| 802 |
+
attn_output = self.out_proj(attn_output)
|
| 803 |
+
|
| 804 |
+
if not output_attentions:
|
| 805 |
+
attn_weights = None
|
| 806 |
+
|
| 807 |
+
return attn_output, attn_weights
|
| 808 |
+
|
| 809 |
+
def _flash_attention_forward(
|
| 810 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
| 811 |
+
):
|
| 812 |
+
"""
|
| 813 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
| 814 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
| 815 |
+
Args:
|
| 816 |
+
query_states (`torch.Tensor`):
|
| 817 |
+
Input query states to be passed to Flash Attention API
|
| 818 |
+
key_states (`torch.Tensor`):
|
| 819 |
+
Input key states to be passed to Flash Attention API
|
| 820 |
+
value_states (`torch.Tensor`):
|
| 821 |
+
Input value states to be passed to Flash Attention API
|
| 822 |
+
attention_mask (`torch.Tensor`):
|
| 823 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 824 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
| 825 |
+
dropout (`int`, *optional*):
|
| 826 |
+
Attention dropout
|
| 827 |
+
softmax_scale (`float`, *optional*):
|
| 828 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 829 |
+
"""
|
| 830 |
+
|
| 831 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
| 832 |
+
causal = self.is_causal and query_length != 1
|
| 833 |
+
|
| 834 |
+
# Contains at least one padding token in the sequence
|
| 835 |
+
if attention_mask is not None:
|
| 836 |
+
batch_size = query_states.shape[0]
|
| 837 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 838 |
+
query_states, key_states, value_states, attention_mask, query_length
|
| 839 |
+
)
|
| 840 |
+
|
| 841 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 842 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 843 |
+
|
| 844 |
+
attn_output_unpad = flash_attn_varlen_func(
|
| 845 |
+
query_states,
|
| 846 |
+
key_states,
|
| 847 |
+
value_states,
|
| 848 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 849 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 850 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
| 851 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
| 852 |
+
dropout_p=dropout,
|
| 853 |
+
softmax_scale=softmax_scale,
|
| 854 |
+
causal=causal,
|
| 855 |
+
)
|
| 856 |
+
|
| 857 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 858 |
+
else:
|
| 859 |
+
attn_output = flash_attn_func(
|
| 860 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 861 |
+
)
|
| 862 |
+
|
| 863 |
+
return attn_output
|
| 864 |
+
|
| 865 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 866 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 867 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 868 |
+
|
| 869 |
+
key_layer = index_first_axis(
|
| 870 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 871 |
+
)
|
| 872 |
+
value_layer = index_first_axis(
|
| 873 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 874 |
+
)
|
| 875 |
+
if query_length == kv_seq_len:
|
| 876 |
+
query_layer = index_first_axis(
|
| 877 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 878 |
+
)
|
| 879 |
+
cu_seqlens_q = cu_seqlens_k
|
| 880 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
| 881 |
+
indices_q = indices_k
|
| 882 |
+
elif query_length == 1:
|
| 883 |
+
max_seqlen_in_batch_q = 1
|
| 884 |
+
cu_seqlens_q = torch.arange(
|
| 885 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
| 886 |
+
) # There is a memcpy here, that is very bad.
|
| 887 |
+
indices_q = cu_seqlens_q[:-1]
|
| 888 |
+
query_layer = query_layer.squeeze(1)
|
| 889 |
+
else:
|
| 890 |
+
# The -q_len: slice assumes left padding.
|
| 891 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 892 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
| 893 |
+
|
| 894 |
+
return (
|
| 895 |
+
query_layer,
|
| 896 |
+
key_layer,
|
| 897 |
+
value_layer,
|
| 898 |
+
indices_q,
|
| 899 |
+
(cu_seqlens_q, cu_seqlens_k),
|
| 900 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 901 |
+
)
|
| 902 |
+
|
| 903 |
+
|
| 904 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
|
| 905 |
+
class SiglipMLP(nn.Module):
|
| 906 |
+
def __init__(self, config):
|
| 907 |
+
super().__init__()
|
| 908 |
+
self.config = config
|
| 909 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
| 910 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
| 911 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
| 912 |
+
|
| 913 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 914 |
+
hidden_states = self.fc1(hidden_states)
|
| 915 |
+
hidden_states = self.activation_fn(hidden_states)
|
| 916 |
+
hidden_states = self.fc2(hidden_states)
|
| 917 |
+
return hidden_states
|
| 918 |
+
|
| 919 |
+
|
| 920 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
|
| 921 |
+
class SiglipEncoderLayer(nn.Module):
|
| 922 |
+
def __init__(self, config: SiglipConfig):
|
| 923 |
+
super().__init__()
|
| 924 |
+
self.embed_dim = config.hidden_size
|
| 925 |
+
self.self_attn = (
|
| 926 |
+
SiglipAttention(config)
|
| 927 |
+
if not getattr(config, "_flash_attn_2_enabled", False)
|
| 928 |
+
else SiglipFlashAttention2(config)
|
| 929 |
+
)
|
| 930 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 931 |
+
self.mlp = SiglipMLP(config)
|
| 932 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
| 933 |
+
|
| 934 |
+
def forward(
|
| 935 |
+
self,
|
| 936 |
+
hidden_states: torch.Tensor,
|
| 937 |
+
attention_mask: torch.Tensor,
|
| 938 |
+
output_attentions: Optional[bool] = False,
|
| 939 |
+
) -> Tuple[torch.FloatTensor]:
|
| 940 |
+
"""
|
| 941 |
+
Args:
|
| 942 |
+
hidden_states (`torch.FloatTensor`):
|
| 943 |
+
Input to the layer of shape `(batch, seq_len, embed_dim)`.
|
| 944 |
+
attention_mask (`torch.FloatTensor`):
|
| 945 |
+
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
|
| 946 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
| 947 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 948 |
+
returned tensors for more detail.
|
| 949 |
+
"""
|
| 950 |
+
residual = hidden_states
|
| 951 |
+
|
| 952 |
+
hidden_states = self.layer_norm1(hidden_states)
|
| 953 |
+
hidden_states, attn_weights = self.self_attn(
|
| 954 |
+
hidden_states=hidden_states,
|
| 955 |
+
attention_mask=attention_mask,
|
| 956 |
+
output_attentions=output_attentions,
|
| 957 |
+
)
|
| 958 |
+
hidden_states = residual + hidden_states
|
| 959 |
+
|
| 960 |
+
residual = hidden_states
|
| 961 |
+
hidden_states = self.layer_norm2(hidden_states)
|
| 962 |
+
hidden_states = self.mlp(hidden_states)
|
| 963 |
+
hidden_states = residual + hidden_states
|
| 964 |
+
|
| 965 |
+
outputs = (hidden_states,)
|
| 966 |
+
|
| 967 |
+
if output_attentions:
|
| 968 |
+
outputs += (attn_weights,)
|
| 969 |
+
|
| 970 |
+
return outputs
|
| 971 |
+
|
| 972 |
+
|
| 973 |
+
class SiglipPreTrainedModel(PreTrainedModel):
|
| 974 |
+
"""
|
| 975 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 976 |
+
models.
|
| 977 |
+
"""
|
| 978 |
+
|
| 979 |
+
config_class = SiglipConfig
|
| 980 |
+
base_model_prefix = "siglip"
|
| 981 |
+
supports_gradient_checkpointing = True
|
| 982 |
+
|
| 983 |
+
def _init_weights(self, module):
|
| 984 |
+
"""Initialize the weights"""
|
| 985 |
+
|
| 986 |
+
if isinstance(module, SiglipVisionEmbeddings):
|
| 987 |
+
width = (
|
| 988 |
+
self.config.vision_config.hidden_size
|
| 989 |
+
if isinstance(self.config, SiglipConfig)
|
| 990 |
+
else self.config.hidden_size
|
| 991 |
+
)
|
| 992 |
+
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
|
| 993 |
+
elif isinstance(module, nn.Embedding):
|
| 994 |
+
default_flax_embed_init(module.weight)
|
| 995 |
+
elif isinstance(module, SiglipAttention):
|
| 996 |
+
nn.init.normal_(module.q_proj.weight)
|
| 997 |
+
nn.init.normal_(module.k_proj.weight)
|
| 998 |
+
nn.init.normal_(module.v_proj.weight)
|
| 999 |
+
nn.init.normal_(module.out_proj.weight)
|
| 1000 |
+
nn.init.zeros_(module.q_proj.bias)
|
| 1001 |
+
nn.init.zeros_(module.k_proj.bias)
|
| 1002 |
+
nn.init.zeros_(module.v_proj.bias)
|
| 1003 |
+
nn.init.zeros_(module.out_proj.bias)
|
| 1004 |
+
elif isinstance(module, SiglipMLP):
|
| 1005 |
+
nn.init.normal_(module.fc1.weight)
|
| 1006 |
+
nn.init.normal_(module.fc2.weight)
|
| 1007 |
+
nn.init.normal_(module.fc1.bias, std=1e-6)
|
| 1008 |
+
nn.init.normal_(module.fc2.bias, std=1e-6)
|
| 1009 |
+
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
|
| 1010 |
+
nn.init.normal_(module.probe.data)
|
| 1011 |
+
nn.init.normal_(module.attention.in_proj_weight.data)
|
| 1012 |
+
nn.init.zeros_(module.attention.in_proj_bias.data)
|
| 1013 |
+
elif isinstance(module, SiglipModel):
|
| 1014 |
+
logit_scale_init = torch.tensor(0.0)
|
| 1015 |
+
module.logit_scale.data.fill_(logit_scale_init)
|
| 1016 |
+
module.logit_bias.data.zero_()
|
| 1017 |
+
elif isinstance(module, (nn.Linear, nn.Conv2d)):
|
| 1018 |
+
lecun_normal_(module.weight)
|
| 1019 |
+
if module.bias is not None:
|
| 1020 |
+
nn.init.zeros_(module.bias)
|
| 1021 |
+
elif isinstance(module, nn.LayerNorm):
|
| 1022 |
+
module.bias.data.zero_()
|
| 1023 |
+
module.weight.data.fill_(1.0)
|
| 1024 |
+
|
| 1025 |
+
|
| 1026 |
+
SIGLIP_START_DOCSTRING = r"""
|
| 1027 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 1028 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 1029 |
+
etc.)
|
| 1030 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 1031 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 1032 |
+
and behavior.
|
| 1033 |
+
Parameters:
|
| 1034 |
+
config ([`SiglipConfig`]): Model configuration class with all the parameters of the model.
|
| 1035 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 1036 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 1037 |
+
"""
|
| 1038 |
+
|
| 1039 |
+
SIGLIP_TEXT_INPUTS_DOCSTRING = r"""
|
| 1040 |
+
Args:
|
| 1041 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1042 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1043 |
+
it.
|
| 1044 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1045 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1046 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1047 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1048 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1049 |
+
- 1 for tokens that are **not masked**,
|
| 1050 |
+
- 0 for tokens that are **masked**.
|
| 1051 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1052 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1053 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1054 |
+
config.max_position_embeddings - 1]`.
|
| 1055 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1056 |
+
output_attentions (`bool`, *optional*):
|
| 1057 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1058 |
+
tensors for more detail.
|
| 1059 |
+
output_hidden_states (`bool`, *optional*):
|
| 1060 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1061 |
+
more detail.
|
| 1062 |
+
return_dict (`bool`, *optional*):
|
| 1063 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1064 |
+
"""
|
| 1065 |
+
|
| 1066 |
+
SIGLIP_VISION_INPUTS_DOCSTRING = r"""
|
| 1067 |
+
Args:
|
| 1068 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 1069 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 1070 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
| 1071 |
+
output_attentions (`bool`, *optional*):
|
| 1072 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1073 |
+
tensors for more detail.
|
| 1074 |
+
output_hidden_states (`bool`, *optional*):
|
| 1075 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1076 |
+
more detail.
|
| 1077 |
+
return_dict (`bool`, *optional*):
|
| 1078 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1079 |
+
"""
|
| 1080 |
+
|
| 1081 |
+
SIGLIP_INPUTS_DOCSTRING = r"""
|
| 1082 |
+
Args:
|
| 1083 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
| 1084 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
| 1085 |
+
it.
|
| 1086 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
| 1087 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 1088 |
+
[What are input IDs?](../glossary#input-ids)
|
| 1089 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1090 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1091 |
+
- 1 for tokens that are **not masked**,
|
| 1092 |
+
- 0 for tokens that are **masked**.
|
| 1093 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1094 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1095 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 1096 |
+
config.max_position_embeddings - 1]`.
|
| 1097 |
+
[What are position IDs?](../glossary#position-ids)
|
| 1098 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
| 1099 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
|
| 1100 |
+
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
|
| 1101 |
+
return_loss (`bool`, *optional*):
|
| 1102 |
+
Whether or not to return the contrastive loss.
|
| 1103 |
+
output_attentions (`bool`, *optional*):
|
| 1104 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 1105 |
+
tensors for more detail.
|
| 1106 |
+
output_hidden_states (`bool`, *optional*):
|
| 1107 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 1108 |
+
more detail.
|
| 1109 |
+
return_dict (`bool`, *optional*):
|
| 1110 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1111 |
+
"""
|
| 1112 |
+
|
| 1113 |
+
|
| 1114 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
|
| 1115 |
+
class SiglipEncoder(nn.Module):
|
| 1116 |
+
"""
|
| 1117 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
| 1118 |
+
[`SiglipEncoderLayer`].
|
| 1119 |
+
Args:
|
| 1120 |
+
config: SiglipConfig
|
| 1121 |
+
"""
|
| 1122 |
+
|
| 1123 |
+
def __init__(self, config: SiglipConfig):
|
| 1124 |
+
super().__init__()
|
| 1125 |
+
self.config = config
|
| 1126 |
+
self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
| 1127 |
+
self.gradient_checkpointing = False
|
| 1128 |
+
|
| 1129 |
+
# Ignore copy
|
| 1130 |
+
def forward(
|
| 1131 |
+
self,
|
| 1132 |
+
inputs_embeds,
|
| 1133 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1134 |
+
output_attentions: Optional[bool] = None,
|
| 1135 |
+
output_hidden_states: Optional[bool] = None,
|
| 1136 |
+
return_dict: Optional[bool] = None,
|
| 1137 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 1138 |
+
r"""
|
| 1139 |
+
Args:
|
| 1140 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
| 1141 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 1142 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
| 1143 |
+
than the model's internal embedding lookup matrix.
|
| 1144 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1145 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 1146 |
+
- 1 for tokens that are **not masked**,
|
| 1147 |
+
- 0 for tokens that are **masked**.
|
| 1148 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 1149 |
+
output_attentions (`bool`, *optional*):
|
| 1150 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 1151 |
+
returned tensors for more detail.
|
| 1152 |
+
output_hidden_states (`bool`, *optional*):
|
| 1153 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
| 1154 |
+
for more detail.
|
| 1155 |
+
return_dict (`bool`, *optional*):
|
| 1156 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 1157 |
+
"""
|
| 1158 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1159 |
+
output_hidden_states = (
|
| 1160 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1161 |
+
)
|
| 1162 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1163 |
+
|
| 1164 |
+
encoder_states = () if output_hidden_states else None
|
| 1165 |
+
all_attentions = () if output_attentions else None
|
| 1166 |
+
|
| 1167 |
+
hidden_states = inputs_embeds
|
| 1168 |
+
for encoder_layer in self.layers:
|
| 1169 |
+
if output_hidden_states:
|
| 1170 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 1171 |
+
if self.gradient_checkpointing and self.training:
|
| 1172 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 1173 |
+
encoder_layer.__call__,
|
| 1174 |
+
hidden_states,
|
| 1175 |
+
attention_mask,
|
| 1176 |
+
output_attentions,
|
| 1177 |
+
)
|
| 1178 |
+
else:
|
| 1179 |
+
layer_outputs = encoder_layer(
|
| 1180 |
+
hidden_states,
|
| 1181 |
+
attention_mask,
|
| 1182 |
+
output_attentions=output_attentions,
|
| 1183 |
+
)
|
| 1184 |
+
|
| 1185 |
+
hidden_states = layer_outputs[0]
|
| 1186 |
+
|
| 1187 |
+
if output_attentions:
|
| 1188 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
| 1189 |
+
|
| 1190 |
+
if output_hidden_states:
|
| 1191 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 1192 |
+
|
| 1193 |
+
if not return_dict:
|
| 1194 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
| 1195 |
+
return BaseModelOutput(
|
| 1196 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
| 1197 |
+
)
|
| 1198 |
+
|
| 1199 |
+
|
| 1200 |
+
class SiglipTextTransformer(nn.Module):
|
| 1201 |
+
def __init__(self, config: SiglipTextConfig):
|
| 1202 |
+
super().__init__()
|
| 1203 |
+
self.config = config
|
| 1204 |
+
embed_dim = config.hidden_size
|
| 1205 |
+
self.embeddings = SiglipTextEmbeddings(config)
|
| 1206 |
+
self.encoder = SiglipEncoder(config)
|
| 1207 |
+
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 1208 |
+
|
| 1209 |
+
self.head = nn.Linear(embed_dim, embed_dim)
|
| 1210 |
+
|
| 1211 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
| 1212 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
| 1213 |
+
def forward(
|
| 1214 |
+
self,
|
| 1215 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1216 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1217 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1218 |
+
output_attentions: Optional[bool] = None,
|
| 1219 |
+
output_hidden_states: Optional[bool] = None,
|
| 1220 |
+
return_dict: Optional[bool] = None,
|
| 1221 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1222 |
+
r"""
|
| 1223 |
+
Returns:
|
| 1224 |
+
"""
|
| 1225 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1226 |
+
output_hidden_states = (
|
| 1227 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1228 |
+
)
|
| 1229 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1230 |
+
|
| 1231 |
+
if input_ids is None:
|
| 1232 |
+
raise ValueError("You have to specify input_ids")
|
| 1233 |
+
|
| 1234 |
+
input_shape = input_ids.size()
|
| 1235 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 1236 |
+
|
| 1237 |
+
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
|
| 1238 |
+
|
| 1239 |
+
# note: SigLIP's text model does not use a causal mask, unlike the original CLIP model.
|
| 1240 |
+
# expand attention_mask
|
| 1241 |
+
if attention_mask is not None:
|
| 1242 |
+
# [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len]
|
| 1243 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
|
| 1244 |
+
|
| 1245 |
+
encoder_outputs = self.encoder(
|
| 1246 |
+
inputs_embeds=hidden_states,
|
| 1247 |
+
attention_mask=attention_mask,
|
| 1248 |
+
output_attentions=output_attentions,
|
| 1249 |
+
output_hidden_states=output_hidden_states,
|
| 1250 |
+
return_dict=return_dict,
|
| 1251 |
+
)
|
| 1252 |
+
|
| 1253 |
+
last_hidden_state = encoder_outputs[0]
|
| 1254 |
+
last_hidden_state = self.final_layer_norm(last_hidden_state)
|
| 1255 |
+
|
| 1256 |
+
# Assuming "sticky" EOS tokenization, last token is always EOS.
|
| 1257 |
+
pooled_output = last_hidden_state[:, -1, :]
|
| 1258 |
+
pooled_output = self.head(pooled_output)
|
| 1259 |
+
|
| 1260 |
+
if not return_dict:
|
| 1261 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 1262 |
+
|
| 1263 |
+
return BaseModelOutputWithPooling(
|
| 1264 |
+
last_hidden_state=last_hidden_state,
|
| 1265 |
+
pooler_output=pooled_output,
|
| 1266 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1267 |
+
attentions=encoder_outputs.attentions,
|
| 1268 |
+
)
|
| 1269 |
+
|
| 1270 |
+
|
| 1271 |
+
@add_start_docstrings(
|
| 1272 |
+
"""The text model from SigLIP without any head or projection on top.""",
|
| 1273 |
+
SIGLIP_START_DOCSTRING,
|
| 1274 |
+
)
|
| 1275 |
+
class SiglipTextModel(SiglipPreTrainedModel):
|
| 1276 |
+
config_class = SiglipTextConfig
|
| 1277 |
+
|
| 1278 |
+
_no_split_modules = ["SiglipTextEmbeddings", "SiglipEncoderLayer"]
|
| 1279 |
+
|
| 1280 |
+
def __init__(self, config: SiglipTextConfig):
|
| 1281 |
+
super().__init__(config)
|
| 1282 |
+
self.text_model = SiglipTextTransformer(config)
|
| 1283 |
+
# Initialize weights and apply final processing
|
| 1284 |
+
self.post_init()
|
| 1285 |
+
|
| 1286 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 1287 |
+
return self.text_model.embeddings.token_embedding
|
| 1288 |
+
|
| 1289 |
+
def set_input_embeddings(self, value):
|
| 1290 |
+
self.text_model.embeddings.token_embedding = value
|
| 1291 |
+
|
| 1292 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
| 1293 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipTextConfig)
|
| 1294 |
+
def forward(
|
| 1295 |
+
self,
|
| 1296 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1297 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1298 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1299 |
+
output_attentions: Optional[bool] = None,
|
| 1300 |
+
output_hidden_states: Optional[bool] = None,
|
| 1301 |
+
return_dict: Optional[bool] = None,
|
| 1302 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1303 |
+
r"""
|
| 1304 |
+
Returns:
|
| 1305 |
+
Examples:
|
| 1306 |
+
```python
|
| 1307 |
+
>>> from transformers import AutoTokenizer, SiglipTextModel
|
| 1308 |
+
>>> model = SiglipTextModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1309 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
| 1310 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
| 1311 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
| 1312 |
+
>>> outputs = model(**inputs)
|
| 1313 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
| 1314 |
+
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
|
| 1315 |
+
```"""
|
| 1316 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1317 |
+
|
| 1318 |
+
return self.text_model(
|
| 1319 |
+
input_ids=input_ids,
|
| 1320 |
+
attention_mask=attention_mask,
|
| 1321 |
+
position_ids=position_ids,
|
| 1322 |
+
output_attentions=output_attentions,
|
| 1323 |
+
output_hidden_states=output_hidden_states,
|
| 1324 |
+
return_dict=return_dict,
|
| 1325 |
+
)
|
| 1326 |
+
|
| 1327 |
+
|
| 1328 |
+
class SiglipVisionTransformer(nn.Module):
|
| 1329 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 1330 |
+
super().__init__()
|
| 1331 |
+
self.config = config
|
| 1332 |
+
embed_dim = config.hidden_size
|
| 1333 |
+
|
| 1334 |
+
self.embeddings = SiglipVisionEmbeddings(config)
|
| 1335 |
+
self.encoder = SiglipEncoder(config)
|
| 1336 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
| 1337 |
+
self.head = SiglipMultiheadAttentionPoolingHead(config)
|
| 1338 |
+
|
| 1339 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
| 1340 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
| 1341 |
+
def forward(
|
| 1342 |
+
self,
|
| 1343 |
+
pixel_values,
|
| 1344 |
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
| 1345 |
+
output_attentions: Optional[bool] = None,
|
| 1346 |
+
output_hidden_states: Optional[bool] = None,
|
| 1347 |
+
return_dict: Optional[bool] = None,
|
| 1348 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1349 |
+
r"""
|
| 1350 |
+
Returns:
|
| 1351 |
+
"""
|
| 1352 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1353 |
+
output_hidden_states = (
|
| 1354 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1355 |
+
)
|
| 1356 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1357 |
+
|
| 1358 |
+
batch_size = pixel_values.size(0)
|
| 1359 |
+
if patch_attention_mask is None:
|
| 1360 |
+
patch_attention_mask = torch.ones(
|
| 1361 |
+
size=(
|
| 1362 |
+
batch_size,
|
| 1363 |
+
pixel_values.size(2) // self.config.patch_size,
|
| 1364 |
+
pixel_values.size(3) // self.config.patch_size,
|
| 1365 |
+
),
|
| 1366 |
+
dtype=torch.bool,
|
| 1367 |
+
device=pixel_values.device,
|
| 1368 |
+
)
|
| 1369 |
+
|
| 1370 |
+
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask)
|
| 1371 |
+
|
| 1372 |
+
patch_attention_mask = patch_attention_mask.view(batch_size, -1)
|
| 1373 |
+
# The call to `_upad_input` in `_flash_attention_forward` is expensive
|
| 1374 |
+
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence),
|
| 1375 |
+
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence
|
| 1376 |
+
if not torch.any(~patch_attention_mask):
|
| 1377 |
+
attention_mask=None
|
| 1378 |
+
else:
|
| 1379 |
+
attention_mask = (
|
| 1380 |
+
_prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype)
|
| 1381 |
+
if not self.config._flash_attn_2_enabled
|
| 1382 |
+
else patch_attention_mask
|
| 1383 |
+
)
|
| 1384 |
+
|
| 1385 |
+
encoder_outputs = self.encoder(
|
| 1386 |
+
inputs_embeds=hidden_states,
|
| 1387 |
+
attention_mask=attention_mask,
|
| 1388 |
+
output_attentions=output_attentions,
|
| 1389 |
+
output_hidden_states=output_hidden_states,
|
| 1390 |
+
return_dict=return_dict,
|
| 1391 |
+
)
|
| 1392 |
+
|
| 1393 |
+
last_hidden_state = encoder_outputs[0]
|
| 1394 |
+
last_hidden_state = self.post_layernorm(last_hidden_state)
|
| 1395 |
+
|
| 1396 |
+
pooled_output = self.head(
|
| 1397 |
+
hidden_state=last_hidden_state,
|
| 1398 |
+
attention_mask=patch_attention_mask,
|
| 1399 |
+
)
|
| 1400 |
+
|
| 1401 |
+
if not return_dict:
|
| 1402 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 1403 |
+
|
| 1404 |
+
return BaseModelOutputWithPooling(
|
| 1405 |
+
last_hidden_state=last_hidden_state,
|
| 1406 |
+
pooler_output=pooled_output,
|
| 1407 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 1408 |
+
attentions=encoder_outputs.attentions,
|
| 1409 |
+
)
|
| 1410 |
+
|
| 1411 |
+
|
| 1412 |
+
class SiglipMultiheadAttentionPoolingHead(nn.Module):
|
| 1413 |
+
"""Multihead Attention Pooling."""
|
| 1414 |
+
|
| 1415 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 1416 |
+
super().__init__()
|
| 1417 |
+
|
| 1418 |
+
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
|
| 1419 |
+
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
|
| 1420 |
+
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 1421 |
+
self.mlp = SiglipMLP(config)
|
| 1422 |
+
|
| 1423 |
+
def forward(self, hidden_state, attention_mask):
|
| 1424 |
+
batch_size = hidden_state.shape[0]
|
| 1425 |
+
probe = self.probe.repeat(batch_size, 1, 1)
|
| 1426 |
+
|
| 1427 |
+
hidden_state = self.attention(
|
| 1428 |
+
query=probe, key=hidden_state, value=hidden_state, key_padding_mask=~attention_mask
|
| 1429 |
+
)[0]
|
| 1430 |
+
|
| 1431 |
+
residual = hidden_state
|
| 1432 |
+
hidden_state = self.layernorm(hidden_state)
|
| 1433 |
+
hidden_state = residual + self.mlp(hidden_state)
|
| 1434 |
+
|
| 1435 |
+
return hidden_state[:, 0]
|
| 1436 |
+
|
| 1437 |
+
|
| 1438 |
+
@add_start_docstrings(
|
| 1439 |
+
"""The vision model from SigLIP without any head or projection on top.""",
|
| 1440 |
+
SIGLIP_START_DOCSTRING,
|
| 1441 |
+
)
|
| 1442 |
+
class SiglipVisionModel(SiglipPreTrainedModel):
|
| 1443 |
+
config_class = SiglipVisionConfig
|
| 1444 |
+
main_input_name = "pixel_values"
|
| 1445 |
+
|
| 1446 |
+
def __init__(self, config: SiglipVisionConfig):
|
| 1447 |
+
super().__init__(config)
|
| 1448 |
+
|
| 1449 |
+
self.vision_model = SiglipVisionTransformer(config)
|
| 1450 |
+
|
| 1451 |
+
# Initialize weights and apply final processing
|
| 1452 |
+
self.post_init()
|
| 1453 |
+
|
| 1454 |
+
def get_input_embeddings(self) -> nn.Module:
|
| 1455 |
+
return self.vision_model.embeddings.patch_embedding
|
| 1456 |
+
|
| 1457 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
| 1458 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=SiglipVisionConfig)
|
| 1459 |
+
def forward(
|
| 1460 |
+
self,
|
| 1461 |
+
pixel_values,
|
| 1462 |
+
patch_attention_mask: Optional[torch.BoolTensor] = None,
|
| 1463 |
+
output_attentions: Optional[bool] = None,
|
| 1464 |
+
output_hidden_states: Optional[bool] = None,
|
| 1465 |
+
return_dict: Optional[bool] = None,
|
| 1466 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
| 1467 |
+
r"""
|
| 1468 |
+
Returns:
|
| 1469 |
+
Examples:
|
| 1470 |
+
```python
|
| 1471 |
+
>>> from PIL import Image
|
| 1472 |
+
>>> import requests
|
| 1473 |
+
>>> from transformers import AutoProcessor, SiglipVisionModel
|
| 1474 |
+
>>> model = SiglipVisionModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1475 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 1476 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1477 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1478 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
| 1479 |
+
>>> outputs = model(**inputs)
|
| 1480 |
+
>>> last_hidden_state = outputs.last_hidden_state
|
| 1481 |
+
>>> pooled_output = outputs.pooler_output # pooled features
|
| 1482 |
+
```"""
|
| 1483 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1484 |
+
|
| 1485 |
+
return self.vision_model(
|
| 1486 |
+
pixel_values=pixel_values,
|
| 1487 |
+
patch_attention_mask=patch_attention_mask,
|
| 1488 |
+
output_attentions=output_attentions,
|
| 1489 |
+
output_hidden_states=output_hidden_states,
|
| 1490 |
+
return_dict=return_dict,
|
| 1491 |
+
)
|
| 1492 |
+
|
| 1493 |
+
|
| 1494 |
+
@add_start_docstrings(SIGLIP_START_DOCSTRING)
|
| 1495 |
+
class SiglipModel(SiglipPreTrainedModel):
|
| 1496 |
+
config_class = SiglipConfig
|
| 1497 |
+
|
| 1498 |
+
def __init__(self, config: SiglipConfig):
|
| 1499 |
+
super().__init__(config)
|
| 1500 |
+
|
| 1501 |
+
if not isinstance(config.text_config, SiglipTextConfig):
|
| 1502 |
+
raise ValueError(
|
| 1503 |
+
"config.text_config is expected to be of type SiglipTextConfig but is of type"
|
| 1504 |
+
f" {type(config.text_config)}."
|
| 1505 |
+
)
|
| 1506 |
+
|
| 1507 |
+
if not isinstance(config.vision_config, SiglipVisionConfig):
|
| 1508 |
+
raise ValueError(
|
| 1509 |
+
"config.vision_config is expected to be of type SiglipVisionConfig but is of type"
|
| 1510 |
+
f" {type(config.vision_config)}."
|
| 1511 |
+
)
|
| 1512 |
+
|
| 1513 |
+
text_config = config.text_config
|
| 1514 |
+
vision_config = config.vision_config
|
| 1515 |
+
|
| 1516 |
+
self.text_model = SiglipTextTransformer(text_config)
|
| 1517 |
+
self.vision_model = SiglipVisionTransformer(vision_config)
|
| 1518 |
+
|
| 1519 |
+
self.logit_scale = nn.Parameter(torch.randn(1))
|
| 1520 |
+
self.logit_bias = nn.Parameter(torch.randn(1))
|
| 1521 |
+
|
| 1522 |
+
# Initialize weights and apply final processing
|
| 1523 |
+
self.post_init()
|
| 1524 |
+
|
| 1525 |
+
@add_start_docstrings_to_model_forward(SIGLIP_TEXT_INPUTS_DOCSTRING)
|
| 1526 |
+
def get_text_features(
|
| 1527 |
+
self,
|
| 1528 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1529 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1530 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1531 |
+
output_attentions: Optional[bool] = None,
|
| 1532 |
+
output_hidden_states: Optional[bool] = None,
|
| 1533 |
+
return_dict: Optional[bool] = None,
|
| 1534 |
+
) -> torch.FloatTensor:
|
| 1535 |
+
r"""
|
| 1536 |
+
Returns:
|
| 1537 |
+
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
|
| 1538 |
+
applying the projection layer to the pooled output of [`SiglipTextModel`].
|
| 1539 |
+
Examples:
|
| 1540 |
+
```python
|
| 1541 |
+
>>> from transformers import AutoTokenizer, AutoModel
|
| 1542 |
+
>>> import torch
|
| 1543 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1544 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip-base-patch16-224")
|
| 1545 |
+
>>> # important: make sure to set padding="max_length" as that's how the model was trained
|
| 1546 |
+
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
|
| 1547 |
+
>>> with torch.no_grad():
|
| 1548 |
+
... text_features = model.get_text_features(**inputs)
|
| 1549 |
+
```"""
|
| 1550 |
+
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1551 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1552 |
+
output_hidden_states = (
|
| 1553 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1554 |
+
)
|
| 1555 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1556 |
+
|
| 1557 |
+
text_outputs = self.text_model(
|
| 1558 |
+
input_ids=input_ids,
|
| 1559 |
+
attention_mask=attention_mask,
|
| 1560 |
+
position_ids=position_ids,
|
| 1561 |
+
output_attentions=output_attentions,
|
| 1562 |
+
output_hidden_states=output_hidden_states,
|
| 1563 |
+
return_dict=return_dict,
|
| 1564 |
+
)
|
| 1565 |
+
|
| 1566 |
+
pooled_output = text_outputs[1]
|
| 1567 |
+
|
| 1568 |
+
return pooled_output
|
| 1569 |
+
|
| 1570 |
+
@add_start_docstrings_to_model_forward(SIGLIP_VISION_INPUTS_DOCSTRING)
|
| 1571 |
+
def get_image_features(
|
| 1572 |
+
self,
|
| 1573 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1574 |
+
output_attentions: Optional[bool] = None,
|
| 1575 |
+
output_hidden_states: Optional[bool] = None,
|
| 1576 |
+
return_dict: Optional[bool] = None,
|
| 1577 |
+
) -> torch.FloatTensor:
|
| 1578 |
+
r"""
|
| 1579 |
+
Returns:
|
| 1580 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
| 1581 |
+
applying the projection layer to the pooled output of [`SiglipVisionModel`].
|
| 1582 |
+
Examples:
|
| 1583 |
+
```python
|
| 1584 |
+
>>> from PIL import Image
|
| 1585 |
+
>>> import requests
|
| 1586 |
+
>>> from transformers import AutoProcessor, AutoModel
|
| 1587 |
+
>>> import torch
|
| 1588 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1589 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 1590 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1591 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1592 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
| 1593 |
+
>>> with torch.no_grad():
|
| 1594 |
+
... image_features = model.get_image_features(**inputs)
|
| 1595 |
+
```"""
|
| 1596 |
+
# Use SiglipModel's config for some fields (if specified) instead of those of vision & text components.
|
| 1597 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1598 |
+
output_hidden_states = (
|
| 1599 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1600 |
+
)
|
| 1601 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1602 |
+
|
| 1603 |
+
vision_outputs = self.vision_model(
|
| 1604 |
+
pixel_values=pixel_values,
|
| 1605 |
+
output_attentions=output_attentions,
|
| 1606 |
+
output_hidden_states=output_hidden_states,
|
| 1607 |
+
return_dict=return_dict,
|
| 1608 |
+
)
|
| 1609 |
+
|
| 1610 |
+
pooled_output = vision_outputs[1]
|
| 1611 |
+
|
| 1612 |
+
return pooled_output
|
| 1613 |
+
|
| 1614 |
+
@add_start_docstrings_to_model_forward(SIGLIP_INPUTS_DOCSTRING)
|
| 1615 |
+
@replace_return_docstrings(output_type=SiglipOutput, config_class=SiglipConfig)
|
| 1616 |
+
def forward(
|
| 1617 |
+
self,
|
| 1618 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1619 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
| 1620 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1621 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1622 |
+
return_loss: Optional[bool] = None,
|
| 1623 |
+
output_attentions: Optional[bool] = None,
|
| 1624 |
+
output_hidden_states: Optional[bool] = None,
|
| 1625 |
+
return_dict: Optional[bool] = None,
|
| 1626 |
+
) -> Union[Tuple, SiglipOutput]:
|
| 1627 |
+
r"""
|
| 1628 |
+
Returns:
|
| 1629 |
+
Examples:
|
| 1630 |
+
```python
|
| 1631 |
+
>>> from PIL import Image
|
| 1632 |
+
>>> import requests
|
| 1633 |
+
>>> from transformers import AutoProcessor, AutoModel
|
| 1634 |
+
>>> import torch
|
| 1635 |
+
>>> model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
|
| 1636 |
+
>>> processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
|
| 1637 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 1638 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
| 1639 |
+
>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
|
| 1640 |
+
>>> # important: we pass `padding=max_length` since the model was trained with this
|
| 1641 |
+
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")
|
| 1642 |
+
>>> with torch.no_grad():
|
| 1643 |
+
... outputs = model(**inputs)
|
| 1644 |
+
>>> logits_per_image = outputs.logits_per_image
|
| 1645 |
+
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
|
| 1646 |
+
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
|
| 1647 |
+
31.9% that image 0 is 'a photo of 2 cats'
|
| 1648 |
+
```"""
|
| 1649 |
+
# Use SigLIP model's config for some fields (if specified) instead of those of vision & text components.
|
| 1650 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1651 |
+
output_hidden_states = (
|
| 1652 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1653 |
+
)
|
| 1654 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1655 |
+
|
| 1656 |
+
vision_outputs = self.vision_model(
|
| 1657 |
+
pixel_values=pixel_values,
|
| 1658 |
+
output_attentions=output_attentions,
|
| 1659 |
+
output_hidden_states=output_hidden_states,
|
| 1660 |
+
return_dict=return_dict,
|
| 1661 |
+
)
|
| 1662 |
+
|
| 1663 |
+
text_outputs = self.text_model(
|
| 1664 |
+
input_ids=input_ids,
|
| 1665 |
+
attention_mask=attention_mask,
|
| 1666 |
+
position_ids=position_ids,
|
| 1667 |
+
output_attentions=output_attentions,
|
| 1668 |
+
output_hidden_states=output_hidden_states,
|
| 1669 |
+
return_dict=return_dict,
|
| 1670 |
+
)
|
| 1671 |
+
|
| 1672 |
+
image_embeds = vision_outputs[1]
|
| 1673 |
+
text_embeds = text_outputs[1]
|
| 1674 |
+
|
| 1675 |
+
# normalized features
|
| 1676 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 1677 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 1678 |
+
|
| 1679 |
+
# cosine similarity as logits
|
| 1680 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * self.logit_scale.exp() + self.logit_bias
|
| 1681 |
+
logits_per_image = logits_per_text.t()
|
| 1682 |
+
|
| 1683 |
+
loss = None
|
| 1684 |
+
if return_loss:
|
| 1685 |
+
raise NotImplementedError("SigLIP loss to be implemented")
|
| 1686 |
+
|
| 1687 |
+
if not return_dict:
|
| 1688 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
| 1689 |
+
return ((loss,) + output) if loss is not None else output
|
| 1690 |
+
|
| 1691 |
+
return SiglipOutput(
|
| 1692 |
+
loss=loss,
|
| 1693 |
+
logits_per_image=logits_per_image,
|
| 1694 |
+
logits_per_text=logits_per_text,
|
| 1695 |
+
text_embeds=text_embeds,
|
| 1696 |
+
image_embeds=image_embeds,
|
| 1697 |
+
text_model_output=text_outputs,
|
| 1698 |
+
vision_model_output=vision_outputs,
|
| 1699 |
+
)
|
| 1700 |
+
|
| 1701 |
+
|
| 1702 |
+
def get_siglip_vision_model(_flash_attn_2_enabled=True, **kwargs):
|
| 1703 |
+
siglip_vision_config = {
|
| 1704 |
+
"hidden_size": 1152,
|
| 1705 |
+
"image_size": 448,
|
| 1706 |
+
"intermediate_size": 4304,
|
| 1707 |
+
"model_type": "siglip_vision_model",
|
| 1708 |
+
"num_attention_heads": 16,
|
| 1709 |
+
"num_hidden_layers": 27,
|
| 1710 |
+
"patch_size": 14,
|
| 1711 |
+
}
|
| 1712 |
+
|
| 1713 |
+
model_config = SiglipVisionConfig(**siglip_vision_config, _flash_attn_2_enabled=_flash_attn_2_enabled, **kwargs)
|
| 1714 |
+
|
| 1715 |
+
vision_model = SiglipVisionModel(model_config).vision_model
|
| 1716 |
+
|
| 1717 |
+
return vision_model
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|