File size: 4,530 Bytes
403652a 64ca826 71bcad7 403652a 760e69d 403652a 760e69d 5bf1e5d 403652a fbaabb7 5bf1e5d 0ee92ff 5bf1e5d 10fc4ac 5bf1e5d 71bcad7 4a8d5fa 5bf1e5d 403652a 64ca826 403652a 64ca826 403652a 0014911 403652a 225852a c28bfbc 225852a 403652a 64ca826 403652a 64ca826 403652a 64ca826 808c3b0 64ca826 72ed7c1 64ca826 5bf1e5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
license: llama2
library_name: transformers
tags:
- code
model-index:
- name: Code Millenials
results:
- task:
type: text-generation
dataset:
type: openai_humaneval
name: HumanEval
metrics:
- name: pass@1
type: pass@1
value: 0.7621
verified: false
---
# Bud Code Millenials 13B
Welcome to our Code Model repository! Our model is specifically fine-tuned for code generation tasks. Bud Millenial Code Gen open-source models are currently the State of the Art (SOTA) for code generation, beating all the existing models of all sizes. We have achieved a HumanEval value of 80.48 @ Pass 1, beating proprietary models like Gemini Ultra, Claude, GPT-3.5 etc. by a large margin, and on par with GPT-4 (HumanEval ~ 82. Ref. WizardCoder). Our proprietary model (Bud Code Jr) beats GPT-4 as well with a HumanEval value of 88.2 & a context size of 168K, we will be releasing an API for Researchers, Enterprises, and potential Partners by January 2024 end. If interested, please reach out to [email protected]
### News 🔥🔥🔥
- [2024/01/09] We released **Code Millenials 3B** , which achieves the **56.09 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
- [2024/01/09] We released **Code Millenials 1B** , which achieves the **51.82 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
- [2024/01/03] We released **Code Millenials 34B** , which achieves the **80.48 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
- [2024/01/02] We released **Code Millenials 13B** , which achieves the **76.21 pass@1** on the [HumanEval Benchmarks](https://github.com/openai/human-eval).
### HumanEval
<p align="center" width="100%">
<a ><img src="https://raw.githubusercontent.com/BudEcosystem/code-millenials/main/assets/result.png" alt="CodeMillenials" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
</p>
For the millenial models, the eval script in the github repo is used for the above result.
Note: The humaneval values of other models are taken from the official repos of [WizardCoder](https://github.com/nlpxucan/WizardLM), [DeepseekCoder](https://github.com/deepseek-ai/deepseek-coder), [Gemini](https://deepmind.google/technologies/gemini/#capabilities) etc.
### Models
| Model | Checkpoint | HumanEval (+) | MBPP (+) |
|---------|-------------|---------------|----------|
|Code Millenials 34B | <a href="https://huggingface.co/budecosystem/code-millenials-34b" target="_blank">HF Link</a> | 80.48 (75) | 74.68 (62.9) |
|Code Millenials 13B | <a href="https://huggingface.co/budecosystem/code-millenials-13b" target="_blank">HF Link</a> | 76.21 (69.5) | 70.17 (57.6) |
|Code Millenials 3B | <a href="https://huggingface.co/budecosystem/code-millenials-3b" target="_blank">HF Link</a> | 56.09 (52.43) | 55.13 (47.11) |
|Code Millenials 1B | <a href="https://huggingface.co/budecosystem/code-millenials-1b" target="_blank">HF Link</a> | 51.82 (48.17) | 53.13 (44.61) |
### 🚀 Quick Start
Inference code using the pre-trained model from the Hugging Face model hub
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("budecosystem/code-millenials-13b")
model = AutoModelForCausalLM.from_pretrained("budecosystem/code-millenials-13b")
template = """A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
### Instruction: {instruction} ### Response:"""
instruction = <Your code instruction here>
prompt = template.format(instruction=instruction)
inputs = tokenizer(prompt, return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))
```
## Training details
The model is trained of 8 A100 80GB for approximately 15hrs.
| Hyperparameters | Value |
| :----------------------------| :-----: |
| per_device_train_batch_size | 2 |
| gradient_accumulation_steps | 1 |
| epoch | 3 |
| steps | 34503 |
| learning_rate | 2e-5 |
| lr schedular type | cosine |
| warmup ratio | 0.1 |
| optimizer | adamw |
| fp16 | True |
| GPU | 8 A100 80GB |
### Important Note
- **Bias, Risks, and Limitations:** Model may sometimes make errors, produce misleading contents, or struggle to manage tasks that are not related to coding.
|