Upload model
Browse files- README.md +42 -0
- adapter_config.json +25 -0
- head_config.json +21 -0
- pytorch_adapter.bin +3 -0
- pytorch_model_head.bin +3 -0
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- roberta
|
4 |
+
- adapter-transformers
|
5 |
+
datasets:
|
6 |
+
- SOCO
|
7 |
+
---
|
8 |
+
|
9 |
+
# Adapter `buelfhood/SOCO_Adapter_Java_LoRA` for huggingface/CodeBERTa-small-v1
|
10 |
+
|
11 |
+
An [adapter](https://adapterhub.ml) for the `huggingface/CodeBERTa-small-v1` model that was trained on the [SOCO](https://huggingface.co/datasets/SOCO/) dataset and includes a prediction head for classification.
|
12 |
+
|
13 |
+
This adapter was created for usage with the **[Adapters](https://github.com/Adapter-Hub/adapters)** library.
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
First, install `adapters`:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U adapters
|
21 |
+
```
|
22 |
+
|
23 |
+
Now, the adapter can be loaded and activated like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from adapters import AutoAdapterModel
|
27 |
+
|
28 |
+
model = AutoAdapterModel.from_pretrained("huggingface/CodeBERTa-small-v1")
|
29 |
+
adapter_name = model.load_adapter("buelfhood/SOCO_Adapter_Java_LoRA", source="hf", set_active=True)
|
30 |
+
```
|
31 |
+
|
32 |
+
## Architecture & Training
|
33 |
+
|
34 |
+
<!-- Add some description here -->
|
35 |
+
|
36 |
+
## Evaluation results
|
37 |
+
|
38 |
+
<!-- Add some description here -->
|
39 |
+
|
40 |
+
## Citation
|
41 |
+
|
42 |
+
<!-- Add some description here -->
|
adapter_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"alpha": 8,
|
4 |
+
"architecture": "lora",
|
5 |
+
"attn_matrices": [
|
6 |
+
"q",
|
7 |
+
"v"
|
8 |
+
],
|
9 |
+
"composition_mode": "add",
|
10 |
+
"dropout": 0.0,
|
11 |
+
"init_weights": "lora",
|
12 |
+
"intermediate_lora": false,
|
13 |
+
"leave_out": [],
|
14 |
+
"output_lora": false,
|
15 |
+
"r": 8,
|
16 |
+
"selfattn_lora": true,
|
17 |
+
"use_gating": false
|
18 |
+
},
|
19 |
+
"hidden_size": 768,
|
20 |
+
"model_class": "RobertaAdapterModel",
|
21 |
+
"model_name": "huggingface/CodeBERTa-small-v1",
|
22 |
+
"model_type": "roberta",
|
23 |
+
"name": "SOCO_Adapter_Java_LoRA",
|
24 |
+
"version": "0.1.2"
|
25 |
+
}
|
head_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"config": {
|
3 |
+
"activation_function": "tanh",
|
4 |
+
"bias": true,
|
5 |
+
"dropout_prob": null,
|
6 |
+
"head_type": "classification",
|
7 |
+
"label2id": {
|
8 |
+
"LABEL_0": 0,
|
9 |
+
"LABEL_1": 1
|
10 |
+
},
|
11 |
+
"layers": 2,
|
12 |
+
"num_labels": 2,
|
13 |
+
"use_pooler": false
|
14 |
+
},
|
15 |
+
"hidden_size": 768,
|
16 |
+
"model_class": "RobertaAdapterModel",
|
17 |
+
"model_name": "huggingface/CodeBERTa-small-v1",
|
18 |
+
"model_type": "roberta",
|
19 |
+
"name": "SOCO_Adapter_Java_LoRA",
|
20 |
+
"version": "0.1.2"
|
21 |
+
}
|
pytorch_adapter.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a570cbc260a5ac57e9d13ab0d159ae44afeb8bd6e9fc37a053662fd10cb710d
|
3 |
+
size 599214
|
pytorch_model_head.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d990ca41d71c872e40f2305ad71e4bbbf5915a01ecd3ba36b6ff8a8d5e64d66f
|
3 |
+
size 2370728
|