File size: 1,539 Bytes
94e02a9
 
 
 
 
8113859
 
 
94e02a9
 
 
 
 
 
 
 
 
 
 
8113859
94e02a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
library_name: transformers
license: other
base_model: facebook/mask2former-swin-tiny-coco-instance
tags:
- image-segmentation
- instance-segmentation
- vision
- generated_from_trainer
model-index:
- name: training_output
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# training_output

This model is a fine-tuned version of [facebook/mask2former-swin-tiny-coco-instance](https://huggingface.co/facebook/mask2former-swin-tiny-coco-instance) on the /content/deepseg_bucket/100_ppm_color/combined_segments_file_backed/splitted_dataset dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 5
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 80
- total_eval_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 15.0
- mixed_precision_training: Native AMP

### Training results



### Framework versions

- Transformers 4.56.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.0