File size: 8,305 Bytes
c7e514a b1c5ede c7e514a 9e2cc45 e58585e c7e514a 0619692 c7e514a 0619692 c7e514a 0619692 c7e514a f8cdc8d c7e514a f8cdc8d c7e514a f8cdc8d c7e514a f8cdc8d c7e514a f8cdc8d c7e514a f8cdc8d c7e514a f8cdc8d c7e514a f8cdc8d c7e514a f8cdc8d c7e514a f8cdc8d c7e514a f8cdc8d c7e514a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
---
license: cc-by-nc-4.0
base_model:
- black-forest-labs/FLUX.1-Fill-dev
language:
- en
---
# OneReward
Official checkpoint of **[OneReward: Unified Mask-Guided Image Generation via Multi-Task Human Preference Learning](https://arxiv.org/abs/xxxx)**
[](https://arxiv.org/abs/2508.21066) [](https://github.com/bytedance/OneReward) [](https://one-reward.github.io/)
<br>
<p align="center">
<img src="assets/show.jpg" alt="assert" width="800">
</p>
## Introduction
We propose **OneReward**, a novel RLHF methodology for the visual domain by employing Qwen2.5-VL as a generative reward model to enhance multitask reinforcement learning, significantly improving the policy model’s generation ability across multiple subtask. Building on OneReward, we develop **Seedream 3.0 Fill**, a unified SOTA image editing model capable of effec-tively handling diverse tasks including image fill, image extend, object removal, and text rendering. It surpasses several leading commercial and open-source systems, including Ideogram, Adobe Photoshop, and FLUX Fill [Pro]. Finally, based on FLUX Fill [dev], we are thrilled to release **FLUX.1-Fill-dev-OneReward**, which outperforms closed-source FLUX Fill [Pro] in inpainting and outpainting tasks, serving as a powerful new baseline for future research in unified image editing.
<table>
<tr>
<td>
<img src="assets/radius_inpaint.png" width="512">
<p align="center"><b>Image Fill</b></p>
</td>
<td>
<img src="assets/radius_outpaint_w.png" width="512">
<p align="center"><b>Image Extend with Prompt</b></p>
</td>
</tr>
<tr>
<td>
<img src="assets/radius_outpaint_wo.png" width="512">
<p align="center"><b>Image Extend without Prompt</b></p>
</td>
<td>
<img src="assets/radius_eraser.png" width="512">
<p align="center"><b>Object Removal</b></p>
</td>
</tr>
<caption align="bottom" style="font-weight: bold; margin-top: 10px;">Seedream 3.0 Fill Performance Overview</caption>
</table>
## Quick Start
1. Make sure your transformers>=4.51.3 (Supporting Qwen2.5-VL)
2. Install the latest version of diffusers
```
pip install -U diffusers
```
The following contains a code snippet illustrating how to use the model to generate images based on text prompts and input mask, support inpaint(image-fill), outpaint(image-extend), eraser(object-removal). As the model is fully trained, FluxFillCFGPipeline with cfg is needed, you can find it in our github.
```python
import torch
from diffusers.utils import load_image
from diffusers import FluxTransformer2DModel
from src.pipeline_flux_fill_with_cfg import FluxFillCFGPipeline
transformer_onereward = FluxTransformer2DModel.from_pretrained(
"bytedance-research/OneReward",
subfolder="flux.1-fill-dev-OneReward-transformer",
torch_dtype=torch.bfloat16
)
pipe = FluxFillCFGPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev",
transformer=transformer_onereward,
torch_dtype=torch.bfloat16).to("cuda")
# Image Fill
image = load_image('assets/image.png')
mask = load_image('assets/mask_fill.png')
image = pipe(
prompt='the words "ByteDance", and in the next line "OneReward"',
negative_prompt="nsfw",
image=image,
mask_image=mask,
height=image.height,
width=image.width,
guidance_scale=1.0,
true_cfg=4.0,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"image_fill.jpg")
```
<table>
<tr>
<td>
<img src="assets/image.png" width="512">
<p align="center"><b>input</b></p>
</td>
<td>
<img src="assets/result_fill.jpg" width="512">
<p align="center"><b>output</b></p>
</td>
</tr>
</table>
## Model
### FLUX.1-Fill-dev[OneReward], trained with Alg.1 in paper
```python
transformer_onereward = FluxTransformer2DModel.from_pretrained(
"bytedance-research/OneReward",
subfolder="flux.1-fill-dev-OneReward-transformer",
torch_dtype=torch.bfloat16
)
pipe = FluxFillCFGPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev",
transformer=transformer_onereward,
torch_dtype=torch.bfloat16).to("cuda")
```
### FLUX.1-Fill-dev[OneRewardDynamic], trained with Alg.2 in paper
```python
transformer_onereward_dynamic = FluxTransformer2DModel.from_pretrained(
"bytedance-research/OneReward",
subfolder="flux.1-fill-dev-OneRewardDynamic-transformer",
torch_dtype=torch.bfloat16
)
pipe = FluxFillCFGPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev",
transformer=transformer_onereward_dynamic,
torch_dtype=torch.bfloat16).to("cuda")
```
### Image Extend with prompt
```python
image = load_image('assets/image2.png')
mask = load_image('assets/mask_extend.png')
image = pipe(
prompt='Deep in the forest, surronded by colorful flowers',
negative_prompt="nsfw",
image=image,
mask_image=mask,
height=image.height,
width=image.width,
guidance_scale=1.0,
true_cfg=4.0,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"image_extend_w_prompt.jpg")
```
### Image Extend without prompt
```python
image = load_image('assets/image2.png')
mask = load_image('assets/mask_extend.png')
image = pipe(
prompt='high-definition, perfect composition', # using fix prompt in image extend wo prompt
negative_prompt="nsfw",
image=image,
mask_image=mask,
height=image.height,
width=image.width,
guidance_scale=1.0,
true_cfg=4.0,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"image_extend_wo_prompt.jpg")
```
### Object Removal
```python
image = load_image('assets/image.png')
mask = load_image('assets/mask_remove.png')
image = pipe(
prompt='remove', # using fix prompt in object removal
negative_prompt="nsfw",
image=image,
mask_image=mask,
height=image.height,
width=image.width,
guidance_scale=1.0,
true_cfg=4.0,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"object_removal.jpg")
```
### Object Removal with Lora
As the base model flux fill have undergone heavy SFT for object generation, the improvement on removal is not obvious. we release a lora for object removal separately and might be helpful for you.
```python
import torch
from diffusers.utils import load_image
from diffusers import FluxTransformer2DModel
from src.pipeline_flux_fill_with_cfg import FluxFillCFGPipeline
transformer_onereward = FluxTransformer2DModel.from_pretrained(
"bytedance-research/OneReward",
subfolder="flux.1-fill-dev-OneReward-transformer",
torch_dtype=torch.bfloat16
)
pipe = FluxFillCFGPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev",
transformer=transformer_onereward,
torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights(
"bytedance-research/OneReward",
subfolder="flux.1-fill-dev-object-removal-lora",
weight_name="pytorch_lora_weights.safetensors",
adapter_name="object_removal_lora"
)
print("Loaded adapters:", pipe.get_list_adapters())
pipe.set_adapters(["object_removal_lora"], adapter_weights=[1.0])
# Object Removal
image = load_image('assets/image.png')
mask = load_image('assets/mask_remove.png')
image = pipe(
prompt='remove', # using fix prompt in object removal
negative_prompt="nsfw",
image=image,
mask_image=mask,
height=image.height,
width=image.width,
guidance_scale=1.0,
true_cfg=4.0,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0),
).images[0]
image.save(f"object_removal_lora.jpg")
```
## License Agreement
Code is licensed under Apache 2.0. Model is licensed under CC BY NC 4.0.
## Citation
```
@article{gong2025onereward,
title={OneReward: Unified Mask-Guided Image Generation via Multi-Task Human Preference Learning},
author={Gong, Yuan and Wang, Xionghui and Wu, Jie and Wang, Shiyin and Wang, Yitong and Wu, Xinglong},
journal={arXiv preprint arXiv:2508.21066},
year={2025}
}
``` |