--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - accuracy model-index: - name: 16052025_xlm_roberta_large_test_linsearch_only_abstract results: [] --- # 16052025_xlm_roberta_large_test_linsearch_only_abstract This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3318 - Accuracy: 0.5931 - F1 Macro: 0.5650 - Precision Macro: 0.5755 - Recall Macro: 0.5602 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | |:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|:---------------:|:------------:| | 1.3362 | 0.9999 | 7024 | 1.3026 | 0.5520 | 0.4904 | 0.5266 | 0.4959 | | 1.2241 | 1.9999 | 14048 | 1.2036 | 0.5773 | 0.5348 | 0.5535 | 0.5395 | | 1.1337 | 2.9999 | 21072 | 1.1903 | 0.5760 | 0.5303 | 0.5466 | 0.5278 | | 1.069 | 3.9999 | 28096 | 1.1570 | 0.5876 | 0.5418 | 0.5564 | 0.5439 | | 0.9832 | 4.9999 | 35120 | 1.1723 | 0.5872 | 0.5461 | 0.5570 | 0.5461 | | 0.9197 | 5.9999 | 42144 | 1.1752 | 0.5871 | 0.5455 | 0.5456 | 0.5572 | | 0.8278 | 6.9999 | 49168 | 1.2078 | 0.5928 | 0.5537 | 0.5616 | 0.5589 | | 0.7568 | 7.9999 | 56192 | 1.2398 | 0.5923 | 0.5563 | 0.5612 | 0.5568 | | 0.6863 | 8.9999 | 63216 | 1.2840 | 0.5937 | 0.5556 | 0.5723 | 0.5465 | | 0.63 | 9.9999 | 70240 | 1.3318 | 0.5931 | 0.5650 | 0.5755 | 0.5602 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0