--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy model-index: - name: miltilingual_dbert_linsearch_only_abstract results: [] --- # miltilingual_dbert_linsearch_only_abstract This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1201 - Accuracy: 0.6505 - F1 Macro: 0.5674 - Precision Macro: 0.5715 - Recall Macro: 0.5690 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | |:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|:---------------:|:------------:| | 2.7395 | 1.0 | 1233 | 1.6602 | 0.5501 | 0.3447 | 0.3829 | 0.3645 | | 1.5662 | 2.0 | 2466 | 1.2526 | 0.6228 | 0.5112 | 0.5447 | 0.5114 | | 1.2526 | 3.0 | 3699 | 1.1599 | 0.6396 | 0.5478 | 0.5537 | 0.5551 | | 1.1111 | 4.0 | 4932 | 1.1279 | 0.6469 | 0.5645 | 0.5619 | 0.5745 | | 0.9426 | 5.0 | 6165 | 1.1201 | 0.6505 | 0.5674 | 0.5715 | 0.5690 | | 0.8696 | 6.0 | 7398 | 1.1415 | 0.6462 | 0.5620 | 0.5645 | 0.5647 | | 0.8271 | 7.0 | 8631 | 1.1486 | 0.6467 | 0.5657 | 0.5670 | 0.5667 | | 0.7772 | 8.0 | 9864 | 1.1642 | 0.6477 | 0.5670 | 0.5644 | 0.5723 | | 0.7247 | 9.0 | 11097 | 1.1731 | 0.6456 | 0.5644 | 0.5633 | 0.5676 | | 0.7072 | 9.9922 | 12320 | 1.1731 | 0.6463 | 0.5658 | 0.5657 | 0.5677 | ### Framework versions - Transformers 4.50.1 - Pytorch 2.5.1+cu121 - Datasets 3.4.1 - Tokenizers 0.21.1