--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_linsearch_only_abstract results: [] --- # test_linsearch_only_abstract This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2716 - Accuracy: 0.6508 - F1 Macro: 0.5942 - Precision Macro: 0.6170 - Recall Macro: 0.5858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:--------:|:---------------:|:------------:| | 1.2232 | 1.0 | 2466 | 1.1574 | 0.6405 | 0.5484 | 0.5538 | 0.5608 | | 1.0386 | 2.0 | 4932 | 1.0934 | 0.6497 | 0.5631 | 0.5712 | 0.5642 | | 0.9215 | 3.0 | 7398 | 1.0725 | 0.6634 | 0.5933 | 0.5950 | 0.5970 | | 0.8026 | 4.0 | 9864 | 1.0994 | 0.6532 | 0.5817 | 0.5905 | 0.5796 | | 0.6754 | 5.0 | 12330 | 1.1462 | 0.6558 | 0.5838 | 0.5934 | 0.5806 | | 0.5958 | 6.0 | 14796 | 1.2077 | 0.6537 | 0.5857 | 0.5963 | 0.5813 | | 0.4924 | 7.0 | 17262 | 1.2716 | 0.6508 | 0.5942 | 0.6170 | 0.5858 | | 0.4165 | 8.0 | 19728 | 1.3450 | 0.6450 | 0.5938 | 0.6037 | 0.5923 | | 0.3599 | 9.0 | 22194 | 1.4048 | 0.6412 | 0.5906 | 0.6077 | 0.5812 | | 0.3262 | 10.0 | 24660 | 1.4422 | 0.6389 | 0.5941 | 0.6032 | 0.5894 | ### Framework versions - Transformers 4.50.1 - Pytorch 2.6.0+cu124 - Datasets 3.4.1 - Tokenizers 0.21.1