File size: 2,659 Bytes
b6a92c1
 
fe77a92
 
b6a92c1
fe77a92
 
 
b6a92c1
 
 
 
 
 
 
 
 
 
 
fe77a92
b6a92c1
855fc23
 
b6a92c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
855fc23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6a92c1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: facebook/detr-resnet-50
tags:
- image-regression
- human-movement
- vision
- generated_from_trainer
model-index:
- name: target_hold
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# target_hold

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the c14kevincardenas/beta_caller_284_target_hold dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8720
- Iou: 0.0008

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 2014
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 250
- num_epochs: 20.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Iou    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.2348        | 1.0   | 100  | 1.1666          | 0.0001 |
| 1.0043        | 2.0   | 200  | 0.9816          | 0.0023 |
| 0.9101        | 3.0   | 300  | 0.9058          | 0.0020 |
| 0.8846        | 4.0   | 400  | 0.8883          | 0.0013 |
| 0.8755        | 5.0   | 500  | 0.8819          | 0.0011 |
| 0.8714        | 6.0   | 600  | 0.8789          | 0.0010 |
| 0.8684        | 7.0   | 700  | 0.8773          | 0.0009 |
| 0.8664        | 8.0   | 800  | 0.8764          | 0.0008 |
| 0.8677        | 9.0   | 900  | 0.8752          | 0.0009 |
| 0.863         | 10.0  | 1000 | 0.8747          | 0.0009 |
| 0.8619        | 11.0  | 1100 | 0.8737          | 0.0009 |
| 0.8637        | 12.0  | 1200 | 0.8732          | 0.0009 |
| 0.8632        | 13.0  | 1300 | 0.8730          | 0.0009 |
| 0.8581        | 14.0  | 1400 | 0.8727          | 0.0009 |
| 0.8615        | 15.0  | 1500 | 0.8724          | 0.0009 |
| 0.8604        | 16.0  | 1600 | 0.8724          | 0.0008 |
| 0.8606        | 17.0  | 1700 | 0.8720          | 0.0009 |
| 0.8592        | 18.0  | 1800 | 0.8720          | 0.0009 |
| 0.8621        | 19.0  | 1900 | 0.8720          | 0.0008 |
| 0.8629        | 20.0  | 2000 | 0.8720          | 0.0008 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1