|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
class SAM2Hierarchical(nn.Module): |
|
def __init__(self, num_classes=6, in_channels=3, backbone="vit_b", freeze_backbone=True, use_cls_head=True): |
|
super().__init__() |
|
self.use_cls_head = use_cls_head |
|
|
|
|
|
self.backbone = nn.Sequential( |
|
nn.Conv2d(in_channels, 64, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(64), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), |
|
nn.BatchNorm2d(128), |
|
nn.ReLU(inplace=True) |
|
) |
|
|
|
|
|
self.segmentation_head = nn.Sequential( |
|
nn.Conv2d(128, 64, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(64, num_classes, kernel_size=1) |
|
) |
|
|
|
|
|
if self.use_cls_head: |
|
self.cls_head = nn.Linear(128, num_classes) |
|
|
|
if freeze_backbone: |
|
for param in self.backbone.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, x): |
|
features = self.backbone(x) |
|
logits = self.segmentation_head(features) |
|
|
|
if self.use_cls_head: |
|
|
|
return logits |
|
|
|
return logits |
|
|