groadabike commited on
Commit
cf3bef3
·
verified ·
1 Parent(s): 7c6b998

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -1
README.md CHANGED
@@ -12,7 +12,7 @@ tags:
12
  - Causal
13
  ---
14
 
15
- # Cadenza Challenge: CAD2-Task1
16
 
17
  A Causal separation model for the CAD2-Task2 system.
18
 
@@ -55,4 +55,30 @@ model = DynamicSourceSeparator.from_pretrained(
55
 
56
  ```
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
 
12
  - Causal
13
  ---
14
 
15
+ # Cadenza Challenge: CAD2-Task2
16
 
17
  A Causal separation model for the CAD2-Task2 system.
18
 
 
55
 
56
  ```
57
 
58
+ ## Description
59
+
60
+ Audio source separation model used in Sytem T002 for [Cadenza2 Task2 Challenge](https://cadenzachallenge.org/docs/cadenza2/Rebalancing%20Classical/rebalancing)
61
+
62
+ The model is a finetune of the 8 ConvTasNet models from the Task2 baseline.
63
+ The training optimised the estimated sources and the recosntructed mixture
64
+
65
+ $$
66
+ Loss = \sum_{}^{Sources}(L_1(estimated~source, ref~source)) + L_1(reconstructed~mixture, original~mixture)
67
+ $$
68
+ ```Python
69
+ def dynamic_masked_loss(mixture, separated_sources, ground_truth_sources, indicator):
70
+ # Reconstruction Loss
71
+ reconstruction = sum(separated_sources.values())
72
+ reconstruction_loss = nn.L1Loss()(reconstruction, mixture)
73
+ # Separation Loss
74
+ separation_loss = 0
75
+ for instrument, active in indicator.items():
76
+ if active:
77
+ separation_loss += nn.L1Loss()(
78
+ separated_sources[instrument], ground_truth_sources[instrument]
79
+ )
80
+ return reconstruction_loss + separation_loss
81
+ ```
82
+ Model and T002 recipe are shared in [Clarity toolkit](https://github.com/claritychallenge/clarity)
83
+
84