Update README.md
Browse files
README.md
CHANGED
@@ -12,7 +12,7 @@ tags:
|
|
12 |
- Causal
|
13 |
---
|
14 |
|
15 |
-
# Cadenza Challenge: CAD2-
|
16 |
|
17 |
A Causal separation model for the CAD2-Task2 system.
|
18 |
|
@@ -55,4 +55,30 @@ model = DynamicSourceSeparator.from_pretrained(
|
|
55 |
|
56 |
```
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
|
|
12 |
- Causal
|
13 |
---
|
14 |
|
15 |
+
# Cadenza Challenge: CAD2-Task2
|
16 |
|
17 |
A Causal separation model for the CAD2-Task2 system.
|
18 |
|
|
|
55 |
|
56 |
```
|
57 |
|
58 |
+
## Description
|
59 |
+
|
60 |
+
Audio source separation model used in Sytem T002 for [Cadenza2 Task2 Challenge](https://cadenzachallenge.org/docs/cadenza2/Rebalancing%20Classical/rebalancing)
|
61 |
+
|
62 |
+
The model is a finetune of the 8 ConvTasNet models from the Task2 baseline.
|
63 |
+
The training optimised the estimated sources and the recosntructed mixture
|
64 |
+
|
65 |
+
$$
|
66 |
+
Loss = \sum_{}^{Sources}(L_1(estimated~source, ref~source)) + L_1(reconstructed~mixture, original~mixture)
|
67 |
+
$$
|
68 |
+
```Python
|
69 |
+
def dynamic_masked_loss(mixture, separated_sources, ground_truth_sources, indicator):
|
70 |
+
# Reconstruction Loss
|
71 |
+
reconstruction = sum(separated_sources.values())
|
72 |
+
reconstruction_loss = nn.L1Loss()(reconstruction, mixture)
|
73 |
+
# Separation Loss
|
74 |
+
separation_loss = 0
|
75 |
+
for instrument, active in indicator.items():
|
76 |
+
if active:
|
77 |
+
separation_loss += nn.L1Loss()(
|
78 |
+
separated_sources[instrument], ground_truth_sources[instrument]
|
79 |
+
)
|
80 |
+
return reconstruction_loss + separation_loss
|
81 |
+
```
|
82 |
+
Model and T002 recipe are shared in [Clarity toolkit](https://github.com/claritychallenge/clarity)
|
83 |
+
|
84 |
|