--- library_name: transformers license: mit base_model: cardiffnlp/twitter-roberta-large-hate-latest tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: twitter-roberta-large-hate-latest-hate-mr results: [] --- # twitter-roberta-large-hate-latest-hate-mr This model is a fine-tuned version of [cardiffnlp/twitter-roberta-large-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-large-hate-latest) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0281 - Accuracy: 0.9938 - Precision: 0.9938 - Recall: 0.9938 - F1: 0.9938 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6832 | 0.9836 | 30 | 0.6742 | 0.5084 | 0.7524 | 0.5072 | 0.3498 | | 0.5977 | 2.0 | 61 | 0.8033 | 0.5253 | 0.6631 | 0.5242 | 0.3960 | | 0.5943 | 2.9836 | 91 | 0.6655 | 0.6482 | 0.6846 | 0.6487 | 0.6304 | | 0.3755 | 4.0 | 122 | 0.7484 | 0.6916 | 0.6983 | 0.6918 | 0.6891 | | 0.4144 | 4.9836 | 152 | 0.6091 | 0.6988 | 0.6992 | 0.6988 | 0.6987 | | 0.2831 | 6.0 | 183 | 0.7688 | 0.7205 | 0.7330 | 0.7208 | 0.7169 | | 0.1818 | 6.9836 | 213 | 0.9114 | 0.7277 | 0.7361 | 0.7279 | 0.7254 | | 0.0987 | 8.0 | 244 | 1.0269 | 0.7205 | 0.7207 | 0.7205 | 0.7204 | | 0.0523 | 8.9836 | 274 | 1.1469 | 0.7301 | 0.7344 | 0.7303 | 0.7290 | | 0.0329 | 9.8361 | 300 | 1.3097 | 0.7253 | 0.7301 | 0.7255 | 0.7240 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0