File size: 13,666 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processing data for megatron pretraining.
It can be used to convert the text data into indexed dataset for BERT, GPT, T5, RETRO models etc.
Example script to preprocess the loose JSON file for BERT model
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_DB_LOOSE_JSON_FILE \
--json-keys=text \
--vocab-file=PATH_TO_VOCAB_FILE \
--dataset-impl=mmap \
--output-prefix=YOUR_DATA_PREFIX \
--tokenizer-library=megatron \
--tokenizer-type=BertWordPieceCase \
--split-sentences \
--workers=48
```
Example script to preprocess the loose JSON file for GPT model
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_DB_LOOSE_JSON_FILE \
--json-keys=text \
--tokenizer-library=megatron \
--tokenizer-type=GPT2BPETokenizer \
--dataset-impl=mmap \
--merge-file=YOUR_MERGE_FILE \
--vocab-file=YOUR_VOCAB_FILE \
--output-prefix=YOUR_DATA_PREFIX \
--append-eod \
--workers=48
```
Example script to preprocess the loose JSON file for retrieval DB Dataset
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_DB_LOOSE_JSON_FILE \
--json-keys=text \
--tokenizer-library=sentencepiece \
--dataset-impl=retmmap \
--tokenizer-model=tokenizer.model \
--output-prefix=retro_db \
--need-pad-id \
--append-eod \
--retrieval-db \
--chunk_size=64 \
--workers=64
```
Example script to preprocess the JSON file for retrieval training dataset
```python
python scripts/nlp_language_modeling/preprocess_data_for_megatron.py \
--input=PATH_TO_THE_RETRIEVAL_TRAIN_VAL_TEST_LOOSE_JSON_FILE \
--json-keys=text \
--tokenizer-library=sentencepiece \
--dataset-impl=retmmap \
--tokenizer-model=tokenizer.model \
--output-prefix=retro_data \
--need-pad-id \
--append-eod \
--chunk_size=64 \
--workers=64
```
"""
import argparse
import gzip
import json
import multiprocessing
import os
import pathlib
import sys
import time
import ftfy
import torch
from nemo.collections.nlp.data.language_modeling.megatron import indexed_dataset
from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer
try:
import nltk
nltk_available = True
except ImportError:
nltk_available = False
# https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer
class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars):
_period_context_fmt = r"""
\S* # some word material
%(SentEndChars)s # a potential sentence ending
\s* # <-- THIS is what I changed
(?=(?P<after_tok>
%(NonWord)s # either other punctuation
|
(?P<next_tok>\S+) # <-- Normally you would have \s+ here
))"""
class IdentitySplitter(object):
def tokenize(self, *text):
return text
def get_tokenizer(args):
tokenizer = get_nmt_tokenizer(
library=args.tokenizer_library,
model_name=args.tokenizer_type,
tokenizer_model=args.tokenizer_model,
vocab_file=args.vocab_file,
merges_file=args.merge_file,
delimiter=args.delimiter,
)
if args.need_pad_id:
if not hasattr(tokenizer, "pad_id"):
tokenizer.add_special_tokens({'pad_token': '<pad>'})
elif hasattr(tokenizer, "pad_id") and (tokenizer.pad_id is None or tokenizer.pad_id < 0):
tokenizer.add_special_tokens({'pad_token': '<pad>'})
return tokenizer
class Encoder(object):
def __init__(self, args):
self.args = args
def initializer(self):
# Use Encoder class as a container for global data
Encoder.tokenizer = get_tokenizer(self.args)
if self.args.split_sentences:
if not nltk_available:
print("NLTK is not available to split sentences.")
exit()
splitter = nltk.load("tokenizers/punkt/english.pickle")
if self.args.keep_newlines:
# this prevents punkt from eating newlines after sentences
Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer(
train_text=splitter._params, lang_vars=CustomLanguageVars()
)
else:
Encoder.splitter = splitter
else:
Encoder.splitter = IdentitySplitter()
def encode(self, json_line):
if not self.args.text_file:
data = json.loads(json_line)
ids = {}
for key in self.args.json_keys:
text = data[key]
if self.args.apply_ftfy:
text = ftfy.fix_text(text)
doc_ids = []
for sentence in Encoder.splitter.tokenize(text):
sentence_ids = Encoder.tokenizer.text_to_ids(sentence)
if len(sentence_ids) > 0:
doc_ids.append(sentence_ids)
if len(doc_ids) > 0 and self.args.append_eod:
doc_ids[-1].append(Encoder.tokenizer.eos_id)
ids[key] = doc_ids
else:
data = json_line
ids = {}
text = data.strip()
if self.args.apply_ftfy:
text = ftfy.fix_text(text)
doc_ids = []
for sentence in Encoder.splitter.tokenize(text):
sentence_ids = Encoder.tokenizer.text_to_ids(sentence)
if len(sentence_ids) > 0:
doc_ids.append(sentence_ids)
if len(doc_ids) > 0 and self.args.append_eod:
doc_ids[-1].append(Encoder.tokenizer.eos_id)
ids['text'] = doc_ids
return ids, len(json_line)
def get_args():
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title='input data')
group.add_argument(
'--input',
type=str,
required=True,
help='Path to the input json or json.gz file. If preprocessing an entire folder, set the --preproc-folder flag and provide the path to the folder in this arg.',
)
group.add_argument(
'--json-keys', nargs='+', default=['text'], help='space separate listed of keys to extract from json'
)
group.add_argument('--split-sentences', action='store_true', help='Split documents into sentences.')
group.add_argument('--keep-newlines', action='store_true', help='Keep newlines between sentences when splitting.')
group.add_argument('--text_file', action='store_true', help='Use text file instead of json.')
group = parser.add_argument_group(title='tokenizer')
group.add_argument(
'--tokenizer-library',
type=str,
required=True,
choices=['yttm', 'sentencepiece', 'megatron', 'huggingface', 'tabular'],
help='What tokenizer library to use.',
)
group.add_argument(
'--tokenizer-type', type=str, default=None, help='What type of tokenizer to use.',
)
group.add_argument(
'--tokenizer-model', type=str, default=None, help='Path to tokenizer model.',
)
group.add_argument('--vocab-file', type=str, default=None, help='Path to the vocab file')
group.add_argument('--files-filter', type=str, default='**/*.json*', help='files filter str')
group.add_argument('--merge-file', type=str, default=None, help='Path to the BPE merge file (if necessary).')
group.add_argument('--delimiter', type=str, default=None, help='delimiter used for tabular tokenizer')
group.add_argument('--append-eod', action='store_true', help='Append an <eod> token to the end of a document.')
group.add_argument('--retrieval-db', action='store_true', help='Dataset used for retrieval.')
group.add_argument('--need-pad-id', action='store_true', help='Whether we need the pad id for the tokenizer')
group = parser.add_argument_group(title='output data')
group.add_argument('--output-prefix', type=str, required=True, help='Path to binary output file without suffix')
group.add_argument('--dataset-impl', type=str, default='mmap', choices=['lazy', 'cached', 'mmap', 'retmmap'])
group = parser.add_argument_group(title='runtime')
group.add_argument('--workers', type=int, default=1, help='Number of worker processes to launch')
group.add_argument('--chunk_size', type=int, default=64, help='chunk size used for retrieval')
group.add_argument(
'--chunk_stride_size', type=int, default=64, help='the stride size for neighbor chunks used for retrieval'
)
group.add_argument('--log-interval', type=int, default=100, help='Interval between progress updates')
group.add_argument(
'--preproc-folder',
action='store_true',
help='If set, will preprocess all .json or .json.gz files into a single .bin and .idx file. Folder path provided via the --input arg',
)
group.add_argument('--apply-ftfy', action='store_true', help='If set, will apply ftfy to the input text')
args = parser.parse_args()
args.keep_empty = False
if args.tokenizer_type is not None and args.tokenizer_type.lower().startswith('bert'):
if not args.split_sentences:
print("Bert tokenizer detected, are you sure you don't want to split sentences?")
# some default/dummy values for the tokenizer
args.rank = 0
args.make_vocab_size_divisible_by = 128
args.tensor_model_parallel_size = 1
args.vocab_extra_ids = 0
# TODO: There are dependencies b/w libraries and model files / tokenizer type strings to check.
assert args.tokenizer_type is not None or args.tokenizer_model is not None
return args
def main():
args = get_args()
startup_start = time.time()
if args.preproc_folder:
print('Searching folder for .json or .json.gz files...')
assert os.path.exists(args.input), f'Folder does not exist: {args.input}'
json_files = (str(f) for f in pathlib.Path(args.input).glob(args.files_filter))
json_files = [f for f in json_files if f.endswith('.json') or f.endswith('.json.gz')]
if len(json_files) == 0:
raise FileNotFoundError('No .json or .json.gz files found in folder.')
else:
print(f'Found {len(json_files)} .json or .json.gz files.')
else:
assert os.path.exists(args.input), f'File does not exist: {args.input}'
json_files = [args.input]
if nltk_available and args.split_sentences:
nltk.download("punkt", quiet=True)
encoder = Encoder(args)
if args.dataset_impl == 'retmmap':
assert args.need_pad_id, "retmmap need --need_pad_id flag"
tokenizer = get_tokenizer(args)
level = "document"
if args.split_sentences:
level = "sentence"
print(f"Vocab size: {tokenizer.vocab_size}")
print(f"Output prefix: {args.output_prefix}")
output_bin_files = {}
output_idx_files = {}
builders = {}
for key in args.json_keys:
output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix, key, level)
output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix, key, level)
builders[key] = indexed_dataset.make_builder(
output_bin_files[key],
impl=args.dataset_impl,
chunk_size=args.chunk_size,
pad_id=tokenizer.pad_id if hasattr(tokenizer, "pad_id") else 0,
retrieval_db=args.retrieval_db,
vocab_size=tokenizer.vocab_size,
stride=args.chunk_stride_size,
)
startup_end = time.time()
proc_start = time.time()
total_bytes_processed = 0
print("Time to startup:", startup_end - startup_start)
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
for idx, json_file in enumerate(json_files):
print(f'Processing file {json_file} {idx + 1}/{len(json_files)}')
if json_file.endswith('.gz'):
fin = gzip.open(json_file, 'r')
else:
fin = open(args.input, 'r', encoding='utf-8')
encoded_docs = pool.imap(encoder.encode, fin, 25)
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
total_bytes_processed += bytes_processed
for key, sentences in doc.items():
if len(sentences) == 0:
continue
for sentence in sentences:
builders[key].add_item(torch.IntTensor(sentence))
builders[key].end_document()
if i % args.log_interval == 0:
current = time.time()
elapsed = current - proc_start
mbs = total_bytes_processed / elapsed / 1024 / 1024
print(f"Processed {i} documents", f"({i/elapsed} docs/s, {mbs} MB/s).", file=sys.stderr)
for key in args.json_keys:
builders[key].finalize(output_idx_files[key])
if __name__ == '__main__':
main()
|