File size: 28,965 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf, open_dict
from nemo.collections.asr.data.audio_to_ctm_dataset import FrameCtmUnit
from nemo.collections.asr.data.audio_to_text_dali import DALIOutputs
from nemo.collections.asr.models.asr_model import ASRModel
from nemo.utils import logging
class AlignerWrapperModel(ASRModel):
"""ASR model wrapper to perform alignment building.
Functionality is limited to the components needed to build an alignment."""
def __init__(self, model: ASRModel, cfg: DictConfig):
model_cfg = model.cfg
for ds in ("train_ds", "validation_ds", "test_ds"):
if ds in model_cfg:
model_cfg[ds] = None
super().__init__(cfg=model_cfg, trainer=model.trainer)
self._model = model
self.alignment_type = cfg.get("alignment_type", "forced")
self.word_output = cfg.get("word_output", True)
self.cpu_decoding = cfg.get("cpu_decoding", False)
self.decode_batch_size = cfg.get("decode_batch_size", 0)
# list possible alignment types here for future work
if self.alignment_type == "forced":
pass
elif self.alignment_type == "argmax":
pass
elif self.alignment_type == "loose":
raise NotImplementedError(f"alignment_type=`{self.alignment_type}` is not supported at the moment.")
elif self.alignment_type == "rnnt_decoding_aux":
raise NotImplementedError(f"alignment_type=`{self.alignment_type}` is not supported at the moment.")
else:
raise RuntimeError(f"Unsupported alignment type: {self.alignment_type}")
self._init_model_specific(cfg)
def _init_ctc_alignment_specific(self, cfg: DictConfig):
"""Part of __init__ intended to initialize attributes specific to the alignment type for CTC models.
This method is not supposed to be called outside of __init__.
"""
# do nothing for regular CTC with `argmax` alignment type
if self.alignment_type == "argmax" and not hasattr(self._model, "use_graph_lm"):
return
from nemo.collections.asr.modules.graph_decoder import ViterbiDecoderWithGraph
if self.alignment_type == "forced":
if hasattr(self._model, "use_graph_lm"):
if self._model.use_graph_lm:
self.graph_decoder = self._model.transcribe_decoder
self._model.use_graph_lm = False
else:
self.graph_decoder = ViterbiDecoderWithGraph(
num_classes=self.blank_id, backend="k2", dec_type="topo", return_type="1best"
)
# override split_batch_size
self.graph_decoder.split_batch_size = self.decode_batch_size
else:
self.graph_decoder = ViterbiDecoderWithGraph(
num_classes=self.blank_id, split_batch_size=self.decode_batch_size,
)
# override decoder args if a config is provided
decoder_module_cfg = cfg.get("decoder_module_cfg", None)
if decoder_module_cfg is not None:
self.graph_decoder._decoder.intersect_pruned = decoder_module_cfg.get("intersect_pruned")
self.graph_decoder._decoder.intersect_conf = decoder_module_cfg.get("intersect_conf")
return
if self.alignment_type == "argmax":
# we use transcribe_decoder to get topology-independent output
if not self._model.use_graph_lm:
self._model.transcribe_decoder = ViterbiDecoderWithGraph(
num_classes=self.blank_id, backend="k2", dec_type="topo", return_type="1best"
)
# override decoder args
self._model.transcribe_decoder.return_ilabels = False
self._model.transcribe_decoder.output_aligned = True
self._model.transcribe_decoder.split_batch_size = self.decode_batch_size
self._model.use_graph_lm = False
return
def _init_rnnt_alignment_specific(self, cfg: DictConfig):
"""Part of __init__ intended to initialize attributes specific to the alignment type for RNNT models.
This method is not supposed to be called outside of __init__.
"""
if self.alignment_type == "argmax":
return
from nemo.collections.asr.modules.graph_decoder import ViterbiDecoderWithGraph
if self.alignment_type == "forced":
self.predictor_window_size = cfg.rnnt_cfg.get("predictor_window_size", 0)
self.predictor_step_size = cfg.rnnt_cfg.get("predictor_step_size", 0)
from nemo.collections.asr.parts.k2.utils import apply_rnnt_prune_ranges, get_uniform_rnnt_prune_ranges
self.prepare_pruned_outputs = lambda encoder_outputs, encoded_len, decoder_outputs, transcript_len: apply_rnnt_prune_ranges(
encoder_outputs,
decoder_outputs,
get_uniform_rnnt_prune_ranges(
encoded_len,
transcript_len,
self.predictor_window_size + 1,
self.predictor_step_size,
encoder_outputs.size(1),
).to(device=encoder_outputs.device),
)
from nemo.collections.asr.parts.k2.classes import GraphModuleConfig
self.graph_decoder = ViterbiDecoderWithGraph(
num_classes=self.blank_id,
backend="k2",
dec_type="topo_rnnt_ali",
split_batch_size=self.decode_batch_size,
graph_module_cfg=OmegaConf.structured(
GraphModuleConfig(
topo_type="minimal",
predictor_window_size=self.predictor_window_size,
predictor_step_size=self.predictor_step_size,
)
),
)
# override decoder args if a config is provided
decoder_module_cfg = cfg.get("decoder_module_cfg", None)
if decoder_module_cfg is not None:
self.graph_decoder._decoder.intersect_pruned = decoder_module_cfg.get("intersect_pruned")
self.graph_decoder._decoder.intersect_conf = decoder_module_cfg.get("intersect_conf")
return
def _init_model_specific(self, cfg: DictConfig):
"""Part of __init__ intended to initialize attributes specific to the model type.
This method is not supposed to be called outside of __init__.
"""
from nemo.collections.asr.models.ctc_models import EncDecCTCModel
if isinstance(self._model, EncDecCTCModel):
self.model_type = "ctc"
self.blank_id = self._model.decoder.num_classes_with_blank - 1
self._predict_impl = self._predict_impl_ctc
prob_suppress_index = cfg.ctc_cfg.get("prob_suppress_index", -1)
prob_suppress_value = cfg.ctc_cfg.get("prob_suppress_value", 1.0)
if prob_suppress_value > 1 or prob_suppress_value <= 0:
raise ValueError(f"Suppression value has to be in (0,1]: {prob_suppress_value}")
if prob_suppress_index < -(self.blank_id + 1) or prob_suppress_index > self.blank_id:
raise ValueError(
f"Suppression index for the provided model has to be in [{-self.blank_id+1},{self.blank_id}]: {prob_suppress_index}"
)
self.prob_suppress_index = (
self._model.decoder.num_classes_with_blank + prob_suppress_index
if prob_suppress_index < 0
else prob_suppress_index
)
self.prob_suppress_value = prob_suppress_value
self._init_ctc_alignment_specific(cfg)
return
from nemo.collections.asr.models.rnnt_models import EncDecRNNTModel
if isinstance(self._model, EncDecRNNTModel):
self.model_type = "rnnt"
self.blank_id = self._model.joint.num_classes_with_blank - 1
self.log_softmax = None if self._model.joint.log_softmax is None else not self._model.joint.log_softmax
self._predict_impl = self._predict_impl_rnnt
decoding_config = copy.deepcopy(self._model.cfg.decoding)
decoding_config.strategy = "greedy_batch"
with open_dict(decoding_config):
decoding_config.preserve_alignments = True
decoding_config.fused_batch_size = -1
self._model.change_decoding_strategy(decoding_config)
self._init_rnnt_alignment_specific(cfg)
return
raise RuntimeError(f"Unsupported model type: {type(self._model)}")
def _rnnt_joint_pruned(
self,
encoder_outputs: torch.Tensor,
encoded_len: torch.Tensor,
decoder_outputs: torch.Tensor,
transcript_len: torch.Tensor,
) -> torch.Tensor:
"""A variant of the RNNT Joiner tensor calculation with pruned Encoder and Predictor sum.
Only the uniform pruning is supported at the moment.
"""
encoder_outputs = self._model.joint.enc(encoder_outputs.transpose(1, 2)) # (B, T, H)
decoder_outputs = self._model.joint.pred(decoder_outputs.transpose(1, 2)) # (B, U, H)
encoder_outputs_pruned, decoder_outputs_pruned = self.prepare_pruned_outputs(
encoder_outputs, encoded_len, decoder_outputs, transcript_len
)
res = self._model.joint.joint_net(encoder_outputs_pruned + decoder_outputs_pruned)
# copied from model.joint.joint(...)
if self._model.joint.log_softmax is None:
if not res.is_cuda:
res = res.log_softmax(dim=-1)
else:
if self._model.joint.log_softmax:
res = res.log_softmax(dim=-1)
return res
def _apply_prob_suppress(self, log_probs: torch.Tensor) -> torch.Tensor:
"""Multiplies probability of an element with index self.prob_suppress_index by self.prob_suppress_value times
with stochasticity preservation of the log_probs tensor.
Often used to suppress <blank> probability of the output of a CTC model.
Example:
For
- log_probs = torch.log(torch.tensor([0.015, 0.085, 0.9]))
- self.prob_suppress_index = -1
- self.prob_suppress_value = 0.5
the result of _apply_prob_suppress(log_probs) is
- torch.log(torch.tensor([0.0825, 0.4675, 0.45]))
"""
exp_probs = (log_probs).exp()
x = exp_probs[:, :, self.prob_suppress_index]
# we cannot do y=1-x because exp_probs can be not stochastic due to numerical limitations
y = torch.cat(
[exp_probs[:, :, : self.prob_suppress_index], exp_probs[:, :, self.prob_suppress_index + 1 :]], 2
).sum(-1)
b1 = torch.full((exp_probs.shape[0], exp_probs.shape[1], 1), self.prob_suppress_value, device=log_probs.device)
b2 = ((1 - self.prob_suppress_value * x) / y).unsqueeze(2).repeat(1, 1, exp_probs.shape[-1] - 1)
return (
exp_probs * torch.cat([b2[:, :, : self.prob_suppress_index], b1, b2[:, :, self.prob_suppress_index :]], 2)
).log()
def _prepare_ctc_argmax_predictions(
self, log_probs: torch.Tensor, encoded_len: torch.Tensor
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""Obtains argmax predictions with corresponding probabilities.
Replaces consecutive repeated indices in the argmax predictions with the <blank> index.
"""
if hasattr(self._model, "transcribe_decoder"):
predictions, _, probs = self.transcribe_decoder.forward(log_probs=log_probs, log_probs_length=encoded_len)
else:
greedy_predictions = log_probs.argmax(dim=-1, keepdim=False)
probs_tensor, _ = log_probs.exp().max(dim=-1, keepdim=False)
predictions, probs = [], []
for i in range(log_probs.shape[0]):
utt_len = encoded_len[i]
probs.append(probs_tensor[i, :utt_len])
pred_candidate = greedy_predictions[i, :utt_len].cpu()
# replace consecutive tokens with <blank>
previous = self.blank_id
for j in range(utt_len):
p = pred_candidate[j]
if p == previous and previous != self.blank_id:
pred_candidate[j] = self.blank_id
previous = p
predictions.append(pred_candidate.to(device=greedy_predictions.device))
return predictions, probs
def _predict_impl_rnnt_argmax(
self,
encoded: torch.Tensor,
encoded_len: torch.Tensor,
transcript: torch.Tensor,
transcript_len: torch.Tensor,
sample_id: torch.Tensor,
) -> List[Tuple[int, 'FrameCtmUnit']]:
"""Builds time alignment of an encoded sequence.
This method assumes that the RNNT model is used and the alignment type is `argmax`.
It produces a list of sample ids and fours: (label, start_frame, length, probability), called FrameCtmUnit.
"""
hypotheses = self._model.decoding.rnnt_decoder_predictions_tensor(
encoded, encoded_len, return_hypotheses=True
)[0]
results = []
for s_id, hypothesis in zip(sample_id, hypotheses):
pred_ids = hypothesis.y_sequence.tolist()
tokens = self._model.decoding.decode_ids_to_tokens(pred_ids)
token_begin = hypothesis.timestep
token_len = [j - i for i, j in zip(token_begin, token_begin[1:] + [len(hypothesis.alignments)])]
# we have no token probabilities for the argmax rnnt setup
token_prob = [1.0] * len(tokens)
if self.word_output:
words = [w for w in self._model.decoding.decode_tokens_to_str(pred_ids).split(" ") if w != ""]
words, word_begin, word_len, word_prob = (
self._process_tokens_to_words(tokens, token_begin, token_len, token_prob, words)
if hasattr(self._model, "tokenizer")
else self._process_char_with_space_to_words(tokens, token_begin, token_len, token_prob, words)
)
results.append(
(s_id, [FrameCtmUnit(t, b, l, p) for t, b, l, p in zip(words, word_begin, word_len, word_prob)])
)
else:
results.append(
(
s_id,
[FrameCtmUnit(t, b, l, p) for t, b, l, p in zip(tokens, token_begin, token_len, token_prob)],
)
)
return results
def _process_tokens_to_words(
self,
tokens: List[str],
token_begin: List[int],
token_len: List[int],
token_prob: List[float],
words: List[str],
) -> Tuple[List[str], List[int], List[int], List[float]]:
"""Transforms alignment information from token level to word level.
Used when self._model.tokenizer is present.
"""
# suppose that there are no whitespaces
assert len(self._model.tokenizer.text_to_tokens(words[0])) == len(
self._model.tokenizer.text_to_tokens(words[0] + " ")
)
word_begin, word_len, word_prob = [], [], []
token_len_nonzero = [(t_l if t_l > 0 else 1) for t_l in token_len]
i = 0
for word in words:
loc_tokens = self._model.tokenizer.text_to_tokens(word)
step = len(loc_tokens)
# we assume that an empty word consists of only one token
# drop current token
if step == 0:
token_begin[i + 1] = token_begin[i]
token_len[i + 1] += token_len[i]
token_len_nonzero[i + 1] += token_len_nonzero[i]
del tokens[i], token_begin[i], token_len[i], token_len_nonzero[i], token_prob[i]
continue
# fix <unk> tokenization
if step == 2 and loc_tokens[-1] == "??":
step -= 1
j = i + step
word_begin.append(token_begin[i])
word_len.append(sum(token_len[i:j]))
denominator = sum(token_len_nonzero[i:j])
word_prob.append(sum(token_prob[k] * token_len_nonzero[k] for k in range(i, j)) / denominator)
i = j
return words, word_begin, word_len, word_prob
def _process_char_with_space_to_words(
self,
tokens: List[str],
token_begin: List[int],
token_len: List[int],
token_prob: List[float],
words: List[str],
) -> Tuple[List[str], List[int], List[int], List[float]]:
"""Transforms alignment information from character level to word level.
This method includes separator (typically the space) information in the results.
Used with character-based models (no self._model.tokenizer).
"""
# suppose that there are no whitespaces anywhere except between words
space_idx = (np.array(tokens) == " ").nonzero()[0].tolist()
assert len(words) == len(space_idx) + 1
token_len_nonzero = [(t_l if t_l > 0 else 1) for t_l in token_len]
if len(space_idx) == 0:
word_begin = [token_begin[0]]
word_len = [sum(token_len)]
denominator = sum(token_len_nonzero)
word_prob = [sum(t_p * t_l for t_p, t_l in zip(token_prob, token_len_nonzero)) / denominator]
else:
space_word = "[SEP]"
word_begin = [token_begin[0]]
word_len = [sum(token_len[: space_idx[0]])]
denominator = sum(token_len_nonzero[: space_idx[0]])
word_prob = [sum(token_prob[k] * token_len_nonzero[k] for k in range(space_idx[0])) / denominator]
words_with_space = [words[0]]
for word, i, j in zip(words[1:], space_idx, space_idx[1:] + [len(tokens)]):
# append space
word_begin.append(token_begin[i])
word_len.append(token_len[i])
word_prob.append(token_prob[i])
words_with_space.append(space_word)
# append next word
word_begin.append(token_begin[i + 1])
word_len.append(sum(token_len[i + 1 : j]))
denominator = sum(token_len_nonzero[i + 1 : j])
word_prob.append(sum(token_prob[k] * token_len_nonzero[k] for k in range(i + 1, j)) / denominator)
words_with_space.append(word)
words = words_with_space
return words, word_begin, word_len, word_prob
def _results_to_ctmUnits(
self, s_id: int, pred: torch.Tensor, prob: torch.Tensor
) -> Tuple[int, List['FrameCtmUnit']]:
"""Transforms predictions with probabilities to a list of FrameCtmUnit objects,
containing frame-level alignment information (label, start, duration, probability), for a given sample id.
Alignment information can be either token-based (char, wordpiece, ...) or word-based.
"""
if len(pred) == 0:
return (s_id, [])
non_blank_idx = (pred != self.blank_id).nonzero(as_tuple=True)[0].cpu()
pred_ids = pred[non_blank_idx].tolist()
prob_list = prob.tolist()
if self.model_type == "rnnt":
wer_module = self._model.decoding
# for rnnt forced alignment we always have num_blanks == num_frames,
# thus len(pred) == num_frames + num_non_blanks
token_begin = non_blank_idx - torch.arange(len(non_blank_idx))
token_end = torch.cat((token_begin[1:], torch.tensor([len(pred) - len(non_blank_idx)])))
else:
wer_module = self._model._wer
token_begin = non_blank_idx
token_end = torch.cat((token_begin[1:], torch.tensor([len(pred)])))
tokens = wer_module.decode_ids_to_tokens(pred_ids)
token_len = (token_end - token_begin).tolist()
token_begin = token_begin.tolist()
token_prob = [
sum(prob_list[i:j]) / (j - i)
for i, j in zip(non_blank_idx.tolist(), non_blank_idx[1:].tolist() + [len(pred)])
]
if self.word_output:
words = wer_module.decode_tokens_to_str(pred_ids).split(" ")
words, word_begin, word_len, word_prob = (
self._process_tokens_to_words(tokens, token_begin, token_len, token_prob, words)
if hasattr(self._model, "tokenizer")
else self._process_char_with_space_to_words(tokens, token_begin, token_len, token_prob, words)
)
return s_id, [FrameCtmUnit(t, b, l, p) for t, b, l, p in zip(words, word_begin, word_len, word_prob)]
return s_id, [FrameCtmUnit(t, b, l, p) for t, b, l, p in zip(tokens, token_begin, token_len, token_prob)]
def _predict_impl_ctc(
self,
encoded: torch.Tensor,
encoded_len: torch.Tensor,
transcript: torch.Tensor,
transcript_len: torch.Tensor,
sample_id: torch.Tensor,
) -> List[Tuple[int, 'FrameCtmUnit']]:
"""Builds time alignment of an encoded sequence.
This method assumes that the CTC model is used.
It produces a list of sample ids and fours: (label, start_frame, length, probability), called FrameCtmUnit.
"""
log_probs = encoded
if self.prob_suppress_value != 1.0:
log_probs = self._apply_prob_suppress(log_probs)
if self.alignment_type == "argmax":
predictions, probs = self._prepare_ctc_argmax_predictions(log_probs, encoded_len)
elif self.alignment_type == "forced":
if self.cpu_decoding:
log_probs, encoded_len, transcript, transcript_len = (
log_probs.cpu(),
encoded_len.cpu(),
transcript.cpu(),
transcript_len.cpu(),
)
predictions, probs = self.graph_decoder.align(log_probs, encoded_len, transcript, transcript_len)
else:
raise NotImplementedError()
return [
self._results_to_ctmUnits(s_id, pred, prob)
for s_id, pred, prob in zip(sample_id.tolist(), predictions, probs)
]
def _predict_impl_rnnt(
self,
encoded: torch.Tensor,
encoded_len: torch.Tensor,
transcript: torch.Tensor,
transcript_len: torch.Tensor,
sample_id: torch.Tensor,
) -> List[Tuple[int, 'FrameCtmUnit']]:
"""Builds time alignment of an encoded sequence.
This method assumes that the RNNT model is used.
It produces a list of sample ids and fours: (label, start_frame, length, probability), called FrameCtmUnit.
"""
if self.alignment_type == "argmax":
return self._predict_impl_rnnt_argmax(encoded, encoded_len, transcript, transcript_len, sample_id)
elif self.alignment_type == "forced":
decoded = self._model.decoder(targets=transcript, target_length=transcript_len)[0]
log_probs = (
self._rnnt_joint_pruned(encoded, encoded_len, decoded, transcript_len)
if self.predictor_window_size > 0 and self.predictor_window_size < transcript_len.max()
else self._model.joint(encoder_outputs=encoded, decoder_outputs=decoded)
)
apply_log_softmax = True if self.log_softmax is None and encoded.is_cuda else self.log_softmax
if apply_log_softmax:
log_probs = log_probs.log_softmax(dim=-1)
if self.cpu_decoding:
log_probs, encoded_len, transcript, transcript_len = (
log_probs.cpu(),
encoded_len.cpu(),
transcript.cpu(),
transcript_len.cpu(),
)
predictions, probs = self.graph_decoder.align(log_probs, encoded_len, transcript, transcript_len)
return [
self._results_to_ctmUnits(s_id, pred, prob)
for s_id, pred, prob in zip(sample_id.tolist(), predictions, probs)
]
else:
raise NotImplementedError()
@torch.no_grad()
def predict_step(self, batch, batch_idx, dataloader_idx=0) -> List[Tuple[int, 'FrameCtmUnit']]:
signal, signal_len, transcript, transcript_len, sample_id = batch
if isinstance(batch, DALIOutputs) and batch.has_processed_signal:
encoded, encoded_len = self._model.forward(processed_signal=signal, processed_signal_length=signal_len)[:2]
else:
encoded, encoded_len = self._model.forward(input_signal=signal, input_signal_length=signal_len)[:2]
return self._predict_impl(encoded, encoded_len, transcript, transcript_len, sample_id)
@torch.no_grad()
def transcribe(self, manifest: List[str], batch_size: int = 4, num_workers: int = None,) -> List['FrameCtmUnit']:
"""
Does alignment. Use this method for debugging and prototyping.
Args:
manifest: path to dataset JSON manifest file (in NeMo format). \
Recommended length per audio file is between 5 and 25 seconds.
batch_size: (int) batch size to use during inference. \
Bigger will result in better throughput performance but would use more memory.
num_workers: (int) number of workers for DataLoader
Returns:
A list of four: (label, start_frame, length, probability), called FrameCtmUnit, \
in the same order as in the manifest.
"""
hypotheses = []
# Model's mode and device
mode = self._model.training
device = next(self._model.parameters()).device
dither_value = self._model.preprocessor.featurizer.dither
pad_to_value = self._model.preprocessor.featurizer.pad_to
if num_workers is None:
num_workers = min(batch_size, os.cpu_count() - 1)
try:
self._model.preprocessor.featurizer.dither = 0.0
self._model.preprocessor.featurizer.pad_to = 0
# Switch model to evaluation mode
self._model.eval()
# Freeze the encoder and decoder modules
self._model.encoder.freeze()
self._model.decoder.freeze()
if hasattr(self._model, "joint"):
self._model.joint.freeze()
logging_level = logging.get_verbosity()
logging.set_verbosity(logging.WARNING)
config = {
'manifest_filepath': manifest,
'batch_size': batch_size,
'num_workers': num_workers,
}
temporary_datalayer = self._model._setup_transcribe_dataloader(config)
for test_batch in tqdm(temporary_datalayer, desc="Aligning"):
test_batch[0] = test_batch[0].to(device)
test_batch[1] = test_batch[1].to(device)
hypotheses += [unit for i, unit in self.predict_step(test_batch, 0)]
del test_batch
finally:
# set mode back to its original value
self._model.train(mode=mode)
self._model.preprocessor.featurizer.dither = dither_value
self._model.preprocessor.featurizer.pad_to = pad_to_value
logging.set_verbosity(logging_level)
if mode is True:
self._model.encoder.unfreeze()
self._model.decoder.unfreeze()
if hasattr(self._model, "joint"):
self._model.joint.unfreeze()
return hypotheses
def setup_training_data(self, train_data_config: Optional[Union[DictConfig, Dict]]):
raise RuntimeError("This module cannot be used in training.")
def setup_validation_data(self, val_data_config: Optional[Union[DictConfig, Dict]]):
raise RuntimeError("This module cannot be used in validation.")
def setup_test_data(self, val_data_config: Optional[Union[DictConfig, Dict]]):
raise RuntimeError("This module cannot be used in testing.")
|