File size: 28,965 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf, open_dict

from nemo.collections.asr.data.audio_to_ctm_dataset import FrameCtmUnit
from nemo.collections.asr.data.audio_to_text_dali import DALIOutputs
from nemo.collections.asr.models.asr_model import ASRModel
from nemo.utils import logging


class AlignerWrapperModel(ASRModel):
    """ASR model wrapper to perform alignment building.
    Functionality is limited to the components needed to build an alignment."""

    def __init__(self, model: ASRModel, cfg: DictConfig):
        model_cfg = model.cfg
        for ds in ("train_ds", "validation_ds", "test_ds"):
            if ds in model_cfg:
                model_cfg[ds] = None
        super().__init__(cfg=model_cfg, trainer=model.trainer)
        self._model = model
        self.alignment_type = cfg.get("alignment_type", "forced")
        self.word_output = cfg.get("word_output", True)
        self.cpu_decoding = cfg.get("cpu_decoding", False)
        self.decode_batch_size = cfg.get("decode_batch_size", 0)

        # list possible alignment types here for future work
        if self.alignment_type == "forced":
            pass
        elif self.alignment_type == "argmax":
            pass
        elif self.alignment_type == "loose":
            raise NotImplementedError(f"alignment_type=`{self.alignment_type}` is not supported at the moment.")
        elif self.alignment_type == "rnnt_decoding_aux":
            raise NotImplementedError(f"alignment_type=`{self.alignment_type}` is not supported at the moment.")
        else:
            raise RuntimeError(f"Unsupported alignment type: {self.alignment_type}")

        self._init_model_specific(cfg)

    def _init_ctc_alignment_specific(self, cfg: DictConfig):
        """Part of __init__ intended to initialize attributes specific to the alignment type for CTC models.

        This method is not supposed to be called outside of __init__.
        """
        # do nothing for regular CTC with `argmax` alignment type
        if self.alignment_type == "argmax" and not hasattr(self._model, "use_graph_lm"):
            return

        from nemo.collections.asr.modules.graph_decoder import ViterbiDecoderWithGraph

        if self.alignment_type == "forced":
            if hasattr(self._model, "use_graph_lm"):
                if self._model.use_graph_lm:
                    self.graph_decoder = self._model.transcribe_decoder
                    self._model.use_graph_lm = False
                else:
                    self.graph_decoder = ViterbiDecoderWithGraph(
                        num_classes=self.blank_id, backend="k2", dec_type="topo", return_type="1best"
                    )
                # override split_batch_size
                self.graph_decoder.split_batch_size = self.decode_batch_size
            else:
                self.graph_decoder = ViterbiDecoderWithGraph(
                    num_classes=self.blank_id, split_batch_size=self.decode_batch_size,
                )
            # override decoder args if a config is provided
            decoder_module_cfg = cfg.get("decoder_module_cfg", None)
            if decoder_module_cfg is not None:
                self.graph_decoder._decoder.intersect_pruned = decoder_module_cfg.get("intersect_pruned")
                self.graph_decoder._decoder.intersect_conf = decoder_module_cfg.get("intersect_conf")
            return

        if self.alignment_type == "argmax":
            # we use transcribe_decoder to get topology-independent output
            if not self._model.use_graph_lm:
                self._model.transcribe_decoder = ViterbiDecoderWithGraph(
                    num_classes=self.blank_id, backend="k2", dec_type="topo", return_type="1best"
                )
            # override decoder args
            self._model.transcribe_decoder.return_ilabels = False
            self._model.transcribe_decoder.output_aligned = True
            self._model.transcribe_decoder.split_batch_size = self.decode_batch_size
            self._model.use_graph_lm = False
            return

    def _init_rnnt_alignment_specific(self, cfg: DictConfig):
        """Part of __init__ intended to initialize attributes specific to the alignment type for RNNT models.

        This method is not supposed to be called outside of __init__.
        """
        if self.alignment_type == "argmax":
            return

        from nemo.collections.asr.modules.graph_decoder import ViterbiDecoderWithGraph

        if self.alignment_type == "forced":
            self.predictor_window_size = cfg.rnnt_cfg.get("predictor_window_size", 0)
            self.predictor_step_size = cfg.rnnt_cfg.get("predictor_step_size", 0)

            from nemo.collections.asr.parts.k2.utils import apply_rnnt_prune_ranges, get_uniform_rnnt_prune_ranges

            self.prepare_pruned_outputs = lambda encoder_outputs, encoded_len, decoder_outputs, transcript_len: apply_rnnt_prune_ranges(
                encoder_outputs,
                decoder_outputs,
                get_uniform_rnnt_prune_ranges(
                    encoded_len,
                    transcript_len,
                    self.predictor_window_size + 1,
                    self.predictor_step_size,
                    encoder_outputs.size(1),
                ).to(device=encoder_outputs.device),
            )

            from nemo.collections.asr.parts.k2.classes import GraphModuleConfig

            self.graph_decoder = ViterbiDecoderWithGraph(
                num_classes=self.blank_id,
                backend="k2",
                dec_type="topo_rnnt_ali",
                split_batch_size=self.decode_batch_size,
                graph_module_cfg=OmegaConf.structured(
                    GraphModuleConfig(
                        topo_type="minimal",
                        predictor_window_size=self.predictor_window_size,
                        predictor_step_size=self.predictor_step_size,
                    )
                ),
            )
            # override decoder args if a config is provided
            decoder_module_cfg = cfg.get("decoder_module_cfg", None)
            if decoder_module_cfg is not None:
                self.graph_decoder._decoder.intersect_pruned = decoder_module_cfg.get("intersect_pruned")
                self.graph_decoder._decoder.intersect_conf = decoder_module_cfg.get("intersect_conf")
            return

    def _init_model_specific(self, cfg: DictConfig):
        """Part of __init__ intended to initialize attributes specific to the model type.

        This method is not supposed to be called outside of __init__.
        """
        from nemo.collections.asr.models.ctc_models import EncDecCTCModel

        if isinstance(self._model, EncDecCTCModel):
            self.model_type = "ctc"
            self.blank_id = self._model.decoder.num_classes_with_blank - 1
            self._predict_impl = self._predict_impl_ctc

            prob_suppress_index = cfg.ctc_cfg.get("prob_suppress_index", -1)
            prob_suppress_value = cfg.ctc_cfg.get("prob_suppress_value", 1.0)
            if prob_suppress_value > 1 or prob_suppress_value <= 0:
                raise ValueError(f"Suppression value has to be in (0,1]: {prob_suppress_value}")
            if prob_suppress_index < -(self.blank_id + 1) or prob_suppress_index > self.blank_id:
                raise ValueError(
                    f"Suppression index for the provided model has to be in [{-self.blank_id+1},{self.blank_id}]: {prob_suppress_index}"
                )
            self.prob_suppress_index = (
                self._model.decoder.num_classes_with_blank + prob_suppress_index
                if prob_suppress_index < 0
                else prob_suppress_index
            )
            self.prob_suppress_value = prob_suppress_value

            self._init_ctc_alignment_specific(cfg)
            return

        from nemo.collections.asr.models.rnnt_models import EncDecRNNTModel

        if isinstance(self._model, EncDecRNNTModel):
            self.model_type = "rnnt"
            self.blank_id = self._model.joint.num_classes_with_blank - 1
            self.log_softmax = None if self._model.joint.log_softmax is None else not self._model.joint.log_softmax
            self._predict_impl = self._predict_impl_rnnt

            decoding_config = copy.deepcopy(self._model.cfg.decoding)
            decoding_config.strategy = "greedy_batch"
            with open_dict(decoding_config):
                decoding_config.preserve_alignments = True
                decoding_config.fused_batch_size = -1
            self._model.change_decoding_strategy(decoding_config)
            self._init_rnnt_alignment_specific(cfg)
            return

        raise RuntimeError(f"Unsupported model type: {type(self._model)}")

    def _rnnt_joint_pruned(
        self,
        encoder_outputs: torch.Tensor,
        encoded_len: torch.Tensor,
        decoder_outputs: torch.Tensor,
        transcript_len: torch.Tensor,
    ) -> torch.Tensor:
        """A variant of the RNNT Joiner tensor calculation with pruned Encoder and Predictor sum.
        Only the uniform pruning is supported at the moment.
        """
        encoder_outputs = self._model.joint.enc(encoder_outputs.transpose(1, 2))  # (B, T, H)
        decoder_outputs = self._model.joint.pred(decoder_outputs.transpose(1, 2))  # (B, U, H)

        encoder_outputs_pruned, decoder_outputs_pruned = self.prepare_pruned_outputs(
            encoder_outputs, encoded_len, decoder_outputs, transcript_len
        )
        res = self._model.joint.joint_net(encoder_outputs_pruned + decoder_outputs_pruned)
        # copied from model.joint.joint(...)
        if self._model.joint.log_softmax is None:
            if not res.is_cuda:
                res = res.log_softmax(dim=-1)
        else:
            if self._model.joint.log_softmax:
                res = res.log_softmax(dim=-1)
        return res

    def _apply_prob_suppress(self, log_probs: torch.Tensor) -> torch.Tensor:
        """Multiplies probability of an element with index self.prob_suppress_index by self.prob_suppress_value times
        with stochasticity preservation of the log_probs tensor.
        
        Often used to suppress <blank> probability of the output of a CTC model.
        
        Example:
            For
                - log_probs = torch.log(torch.tensor([0.015, 0.085, 0.9]))
                - self.prob_suppress_index = -1
                - self.prob_suppress_value = 0.5
            the result of _apply_prob_suppress(log_probs) is
                - torch.log(torch.tensor([0.0825, 0.4675, 0.45]))
        """
        exp_probs = (log_probs).exp()
        x = exp_probs[:, :, self.prob_suppress_index]
        # we cannot do y=1-x because exp_probs can be not stochastic due to numerical limitations
        y = torch.cat(
            [exp_probs[:, :, : self.prob_suppress_index], exp_probs[:, :, self.prob_suppress_index + 1 :]], 2
        ).sum(-1)
        b1 = torch.full((exp_probs.shape[0], exp_probs.shape[1], 1), self.prob_suppress_value, device=log_probs.device)
        b2 = ((1 - self.prob_suppress_value * x) / y).unsqueeze(2).repeat(1, 1, exp_probs.shape[-1] - 1)
        return (
            exp_probs * torch.cat([b2[:, :, : self.prob_suppress_index], b1, b2[:, :, self.prob_suppress_index :]], 2)
        ).log()

    def _prepare_ctc_argmax_predictions(
        self, log_probs: torch.Tensor, encoded_len: torch.Tensor
    ) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
        """Obtains argmax predictions with corresponding probabilities.
        Replaces consecutive repeated indices in the argmax predictions with the <blank> index.
        """
        if hasattr(self._model, "transcribe_decoder"):
            predictions, _, probs = self.transcribe_decoder.forward(log_probs=log_probs, log_probs_length=encoded_len)
        else:
            greedy_predictions = log_probs.argmax(dim=-1, keepdim=False)
            probs_tensor, _ = log_probs.exp().max(dim=-1, keepdim=False)
            predictions, probs = [], []
            for i in range(log_probs.shape[0]):
                utt_len = encoded_len[i]
                probs.append(probs_tensor[i, :utt_len])
                pred_candidate = greedy_predictions[i, :utt_len].cpu()
                # replace consecutive tokens with <blank>
                previous = self.blank_id
                for j in range(utt_len):
                    p = pred_candidate[j]
                    if p == previous and previous != self.blank_id:
                        pred_candidate[j] = self.blank_id
                    previous = p
                predictions.append(pred_candidate.to(device=greedy_predictions.device))
        return predictions, probs

    def _predict_impl_rnnt_argmax(
        self,
        encoded: torch.Tensor,
        encoded_len: torch.Tensor,
        transcript: torch.Tensor,
        transcript_len: torch.Tensor,
        sample_id: torch.Tensor,
    ) -> List[Tuple[int, 'FrameCtmUnit']]:
        """Builds time alignment of an encoded sequence.
        This method assumes that the RNNT model is used and the alignment type is `argmax`.

        It produces a list of sample ids and fours: (label, start_frame, length, probability), called FrameCtmUnit.
        """
        hypotheses = self._model.decoding.rnnt_decoder_predictions_tensor(
            encoded, encoded_len, return_hypotheses=True
        )[0]
        results = []
        for s_id, hypothesis in zip(sample_id, hypotheses):
            pred_ids = hypothesis.y_sequence.tolist()
            tokens = self._model.decoding.decode_ids_to_tokens(pred_ids)
            token_begin = hypothesis.timestep
            token_len = [j - i for i, j in zip(token_begin, token_begin[1:] + [len(hypothesis.alignments)])]
            # we have no token probabilities for the argmax rnnt setup
            token_prob = [1.0] * len(tokens)
            if self.word_output:
                words = [w for w in self._model.decoding.decode_tokens_to_str(pred_ids).split(" ") if w != ""]
                words, word_begin, word_len, word_prob = (
                    self._process_tokens_to_words(tokens, token_begin, token_len, token_prob, words)
                    if hasattr(self._model, "tokenizer")
                    else self._process_char_with_space_to_words(tokens, token_begin, token_len, token_prob, words)
                )
                results.append(
                    (s_id, [FrameCtmUnit(t, b, l, p) for t, b, l, p in zip(words, word_begin, word_len, word_prob)])
                )
            else:
                results.append(
                    (
                        s_id,
                        [FrameCtmUnit(t, b, l, p) for t, b, l, p in zip(tokens, token_begin, token_len, token_prob)],
                    )
                )
        return results

    def _process_tokens_to_words(
        self,
        tokens: List[str],
        token_begin: List[int],
        token_len: List[int],
        token_prob: List[float],
        words: List[str],
    ) -> Tuple[List[str], List[int], List[int], List[float]]:
        """Transforms alignment information from token level to word level.

        Used when self._model.tokenizer is present.
        """
        # suppose that there are no whitespaces
        assert len(self._model.tokenizer.text_to_tokens(words[0])) == len(
            self._model.tokenizer.text_to_tokens(words[0] + " ")
        )
        word_begin, word_len, word_prob = [], [], []
        token_len_nonzero = [(t_l if t_l > 0 else 1) for t_l in token_len]
        i = 0
        for word in words:
            loc_tokens = self._model.tokenizer.text_to_tokens(word)
            step = len(loc_tokens)
            # we assume that an empty word consists of only one token
            # drop current token
            if step == 0:
                token_begin[i + 1] = token_begin[i]
                token_len[i + 1] += token_len[i]
                token_len_nonzero[i + 1] += token_len_nonzero[i]
                del tokens[i], token_begin[i], token_len[i], token_len_nonzero[i], token_prob[i]
                continue
            # fix <unk> tokenization
            if step == 2 and loc_tokens[-1] == "??":
                step -= 1
            j = i + step
            word_begin.append(token_begin[i])
            word_len.append(sum(token_len[i:j]))
            denominator = sum(token_len_nonzero[i:j])
            word_prob.append(sum(token_prob[k] * token_len_nonzero[k] for k in range(i, j)) / denominator)
            i = j
        return words, word_begin, word_len, word_prob

    def _process_char_with_space_to_words(
        self,
        tokens: List[str],
        token_begin: List[int],
        token_len: List[int],
        token_prob: List[float],
        words: List[str],
    ) -> Tuple[List[str], List[int], List[int], List[float]]:
        """Transforms alignment information from character level to word level.
        This method includes separator (typically the space) information in the results.

        Used with character-based models (no self._model.tokenizer).
        """
        # suppose that there are no whitespaces anywhere except between words
        space_idx = (np.array(tokens) == " ").nonzero()[0].tolist()
        assert len(words) == len(space_idx) + 1
        token_len_nonzero = [(t_l if t_l > 0 else 1) for t_l in token_len]
        if len(space_idx) == 0:
            word_begin = [token_begin[0]]
            word_len = [sum(token_len)]
            denominator = sum(token_len_nonzero)
            word_prob = [sum(t_p * t_l for t_p, t_l in zip(token_prob, token_len_nonzero)) / denominator]
        else:
            space_word = "[SEP]"
            word_begin = [token_begin[0]]
            word_len = [sum(token_len[: space_idx[0]])]
            denominator = sum(token_len_nonzero[: space_idx[0]])
            word_prob = [sum(token_prob[k] * token_len_nonzero[k] for k in range(space_idx[0])) / denominator]
            words_with_space = [words[0]]
            for word, i, j in zip(words[1:], space_idx, space_idx[1:] + [len(tokens)]):
                # append space
                word_begin.append(token_begin[i])
                word_len.append(token_len[i])
                word_prob.append(token_prob[i])
                words_with_space.append(space_word)
                # append next word
                word_begin.append(token_begin[i + 1])
                word_len.append(sum(token_len[i + 1 : j]))
                denominator = sum(token_len_nonzero[i + 1 : j])
                word_prob.append(sum(token_prob[k] * token_len_nonzero[k] for k in range(i + 1, j)) / denominator)
                words_with_space.append(word)
            words = words_with_space
        return words, word_begin, word_len, word_prob

    def _results_to_ctmUnits(
        self, s_id: int, pred: torch.Tensor, prob: torch.Tensor
    ) -> Tuple[int, List['FrameCtmUnit']]:
        """Transforms predictions with probabilities to a list of FrameCtmUnit objects, 
        containing frame-level alignment information (label, start, duration, probability), for a given sample id.

        Alignment information can be either token-based (char, wordpiece, ...) or word-based.
        """
        if len(pred) == 0:
            return (s_id, [])

        non_blank_idx = (pred != self.blank_id).nonzero(as_tuple=True)[0].cpu()
        pred_ids = pred[non_blank_idx].tolist()
        prob_list = prob.tolist()
        if self.model_type == "rnnt":
            wer_module = self._model.decoding
            # for rnnt forced alignment we always have num_blanks == num_frames,
            # thus len(pred) == num_frames + num_non_blanks
            token_begin = non_blank_idx - torch.arange(len(non_blank_idx))
            token_end = torch.cat((token_begin[1:], torch.tensor([len(pred) - len(non_blank_idx)])))
        else:
            wer_module = self._model._wer
            token_begin = non_blank_idx
            token_end = torch.cat((token_begin[1:], torch.tensor([len(pred)])))
        tokens = wer_module.decode_ids_to_tokens(pred_ids)
        token_len = (token_end - token_begin).tolist()
        token_begin = token_begin.tolist()
        token_prob = [
            sum(prob_list[i:j]) / (j - i)
            for i, j in zip(non_blank_idx.tolist(), non_blank_idx[1:].tolist() + [len(pred)])
        ]
        if self.word_output:
            words = wer_module.decode_tokens_to_str(pred_ids).split(" ")
            words, word_begin, word_len, word_prob = (
                self._process_tokens_to_words(tokens, token_begin, token_len, token_prob, words)
                if hasattr(self._model, "tokenizer")
                else self._process_char_with_space_to_words(tokens, token_begin, token_len, token_prob, words)
            )
            return s_id, [FrameCtmUnit(t, b, l, p) for t, b, l, p in zip(words, word_begin, word_len, word_prob)]
        return s_id, [FrameCtmUnit(t, b, l, p) for t, b, l, p in zip(tokens, token_begin, token_len, token_prob)]

    def _predict_impl_ctc(
        self,
        encoded: torch.Tensor,
        encoded_len: torch.Tensor,
        transcript: torch.Tensor,
        transcript_len: torch.Tensor,
        sample_id: torch.Tensor,
    ) -> List[Tuple[int, 'FrameCtmUnit']]:
        """Builds time alignment of an encoded sequence.
        This method assumes that the CTC model is used.

        It produces a list of sample ids and fours: (label, start_frame, length, probability), called FrameCtmUnit.
        """
        log_probs = encoded

        if self.prob_suppress_value != 1.0:
            log_probs = self._apply_prob_suppress(log_probs)

        if self.alignment_type == "argmax":
            predictions, probs = self._prepare_ctc_argmax_predictions(log_probs, encoded_len)
        elif self.alignment_type == "forced":
            if self.cpu_decoding:
                log_probs, encoded_len, transcript, transcript_len = (
                    log_probs.cpu(),
                    encoded_len.cpu(),
                    transcript.cpu(),
                    transcript_len.cpu(),
                )
            predictions, probs = self.graph_decoder.align(log_probs, encoded_len, transcript, transcript_len)
        else:
            raise NotImplementedError()

        return [
            self._results_to_ctmUnits(s_id, pred, prob)
            for s_id, pred, prob in zip(sample_id.tolist(), predictions, probs)
        ]

    def _predict_impl_rnnt(
        self,
        encoded: torch.Tensor,
        encoded_len: torch.Tensor,
        transcript: torch.Tensor,
        transcript_len: torch.Tensor,
        sample_id: torch.Tensor,
    ) -> List[Tuple[int, 'FrameCtmUnit']]:
        """Builds time alignment of an encoded sequence.
        This method assumes that the RNNT model is used.

        It produces a list of sample ids and fours: (label, start_frame, length, probability), called FrameCtmUnit.
        """
        if self.alignment_type == "argmax":
            return self._predict_impl_rnnt_argmax(encoded, encoded_len, transcript, transcript_len, sample_id)
        elif self.alignment_type == "forced":
            decoded = self._model.decoder(targets=transcript, target_length=transcript_len)[0]
            log_probs = (
                self._rnnt_joint_pruned(encoded, encoded_len, decoded, transcript_len)
                if self.predictor_window_size > 0 and self.predictor_window_size < transcript_len.max()
                else self._model.joint(encoder_outputs=encoded, decoder_outputs=decoded)
            )
            apply_log_softmax = True if self.log_softmax is None and encoded.is_cuda else self.log_softmax
            if apply_log_softmax:
                log_probs = log_probs.log_softmax(dim=-1)
            if self.cpu_decoding:
                log_probs, encoded_len, transcript, transcript_len = (
                    log_probs.cpu(),
                    encoded_len.cpu(),
                    transcript.cpu(),
                    transcript_len.cpu(),
                )
            predictions, probs = self.graph_decoder.align(log_probs, encoded_len, transcript, transcript_len)
            return [
                self._results_to_ctmUnits(s_id, pred, prob)
                for s_id, pred, prob in zip(sample_id.tolist(), predictions, probs)
            ]
        else:
            raise NotImplementedError()

    @torch.no_grad()
    def predict_step(self, batch, batch_idx, dataloader_idx=0) -> List[Tuple[int, 'FrameCtmUnit']]:
        signal, signal_len, transcript, transcript_len, sample_id = batch

        if isinstance(batch, DALIOutputs) and batch.has_processed_signal:
            encoded, encoded_len = self._model.forward(processed_signal=signal, processed_signal_length=signal_len)[:2]
        else:
            encoded, encoded_len = self._model.forward(input_signal=signal, input_signal_length=signal_len)[:2]

        return self._predict_impl(encoded, encoded_len, transcript, transcript_len, sample_id)

    @torch.no_grad()
    def transcribe(self, manifest: List[str], batch_size: int = 4, num_workers: int = None,) -> List['FrameCtmUnit']:
        """
        Does alignment. Use this method for debugging and prototyping.

        Args:

            manifest: path to dataset JSON manifest file (in NeMo format). \
        Recommended length per audio file is between 5 and 25 seconds.
            batch_size: (int) batch size to use during inference. \
        Bigger will result in better throughput performance but would use more memory.
            num_workers: (int) number of workers for DataLoader

        Returns:
            A list of four: (label, start_frame, length, probability), called FrameCtmUnit, \
            in the same order as in the manifest.
        """
        hypotheses = []
        # Model's mode and device
        mode = self._model.training
        device = next(self._model.parameters()).device
        dither_value = self._model.preprocessor.featurizer.dither
        pad_to_value = self._model.preprocessor.featurizer.pad_to

        if num_workers is None:
            num_workers = min(batch_size, os.cpu_count() - 1)

        try:
            self._model.preprocessor.featurizer.dither = 0.0
            self._model.preprocessor.featurizer.pad_to = 0

            # Switch model to evaluation mode
            self._model.eval()
            # Freeze the encoder and decoder modules
            self._model.encoder.freeze()
            self._model.decoder.freeze()
            if hasattr(self._model, "joint"):
                self._model.joint.freeze()
            logging_level = logging.get_verbosity()
            logging.set_verbosity(logging.WARNING)

            config = {
                'manifest_filepath': manifest,
                'batch_size': batch_size,
                'num_workers': num_workers,
            }
            temporary_datalayer = self._model._setup_transcribe_dataloader(config)
            for test_batch in tqdm(temporary_datalayer, desc="Aligning"):
                test_batch[0] = test_batch[0].to(device)
                test_batch[1] = test_batch[1].to(device)
                hypotheses += [unit for i, unit in self.predict_step(test_batch, 0)]
                del test_batch
        finally:
            # set mode back to its original value
            self._model.train(mode=mode)
            self._model.preprocessor.featurizer.dither = dither_value
            self._model.preprocessor.featurizer.pad_to = pad_to_value

            logging.set_verbosity(logging_level)
            if mode is True:
                self._model.encoder.unfreeze()
                self._model.decoder.unfreeze()
                if hasattr(self._model, "joint"):
                    self._model.joint.unfreeze()
        return hypotheses

    def setup_training_data(self, train_data_config: Optional[Union[DictConfig, Dict]]):
        raise RuntimeError("This module cannot be used in training.")

    def setup_validation_data(self, val_data_config: Optional[Union[DictConfig, Dict]]):
        raise RuntimeError("This module cannot be used in validation.")

    def setup_test_data(self, val_data_config: Optional[Union[DictConfig, Dict]]):
        raise RuntimeError("This module cannot be used in testing.")