File size: 26,544 Bytes
7934b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
from typing import Dict, List, Optional, Union
import torch
from omegaconf import DictConfig, ListConfig, OmegaConf, open_dict
from pytorch_lightning import Trainer
from nemo.collections.asr.data import audio_to_text_dataset
from nemo.collections.asr.data.audio_to_text_dali import AudioToBPEDALIDataset
from nemo.collections.asr.losses.rnnt import RNNTLoss
from nemo.collections.asr.metrics.rnnt_wer_bpe import RNNTBPEWER, RNNTBPEDecoding, RNNTBPEDecodingConfig
from nemo.collections.asr.models.rnnt_models import EncDecRNNTModel
from nemo.collections.asr.parts.mixins import ASRBPEMixin
from nemo.core.classes.common import PretrainedModelInfo
from nemo.utils import logging, model_utils
class EncDecRNNTBPEModel(EncDecRNNTModel, ASRBPEMixin):
"""Base class for encoder decoder RNNT-based models with subword tokenization."""
@classmethod
def list_available_models(cls) -> List[PretrainedModelInfo]:
"""
This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
Returns:
List of available pre-trained models.
"""
results = []
model = PretrainedModelInfo(
pretrained_model_name="stt_en_contextnet_256",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_256",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_256/versions/1.6.0/files/stt_en_contextnet_256.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_contextnet_512",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_512",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_512/versions/1.6.0/files/stt_en_contextnet_512.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_contextnet_1024",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_1024",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_1024/versions/1.9.0/files/stt_en_contextnet_1024.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_contextnet_256_mls",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_256_mls",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_256_mls/versions/1.0.0/files/stt_en_contextnet_256_mls.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_contextnet_512_mls",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_512_mls",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_512_mls/versions/1.0.0/files/stt_en_contextnet_512_mls.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_contextnet_1024_mls",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_1024_mls",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_1024_mls/versions/1.0.0/files/stt_en_contextnet_1024_mls.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_conformer_transducer_small",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_small",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_small/versions/1.6.0/files/stt_en_conformer_transducer_small.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_conformer_transducer_medium",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_medium",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_medium/versions/1.6.0/files/stt_en_conformer_transducer_medium.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_large/versions/1.10.0/files/stt_en_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_conformer_transducer_large_ls",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_large_ls",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_large_ls/versions/1.8.0/files/stt_en_conformer_transducer_large_ls.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_conformer_transducer_xlarge",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_xlarge",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_xlarge/versions/1.10.0/files/stt_en_conformer_transducer_xlarge.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_en_conformer_transducer_xxlarge",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_xxlarge",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_xxlarge/versions/1.8.0/files/stt_en_conformer_transducer_xxlarge.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_de_contextnet_1024",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_de_contextnet_1024",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_de_contextnet_1024/versions/1.4.0/files/stt_de_contextnet_1024.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_fr_contextnet_1024",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_fr_contextnet_1024",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_fr_contextnet_1024/versions/1.5/files/stt_fr_contextnet_1024.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_es_contextnet_1024",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_es_contextnet_1024",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_es_contextnet_1024/versions/1.8.0/files/stt_es_contextnet_1024.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_de_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_de_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_de_conformer_transducer_large/versions/1.5.0/files/stt_de_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_fr_conformer_transducer_large",
description="For details about this model, please visit https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_fr_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_fr_conformer_transducer_large/versions/1.5/files/stt_fr_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_es_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_es_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_es_conformer_transducer_large/versions/1.8.0/files/stt_es_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_enes_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_enes_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_enes_conformer_transducer_large/versions/1.0.0/files/stt_enes_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_enes_contextnet_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_enes_contextnet_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_enes_contextnet_large/versions/1.0.0/files/stt_enes_contextnet_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_ca_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_ca_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_ca_conformer_transducer_large/versions/1.11.0/files/stt_ca_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_rw_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_rw_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_rw_conformer_transducer_large/versions/1.11.0/files/stt_rw_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_enes_conformer_transducer_large_codesw",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_enes_conformer_transducer_large_codesw",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_enes_conformer_transducer_large_codesw/versions/1.0.0/files/stt_enes_conformer_transducer_large_codesw.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_kab_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_kab_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_kab_conformer_transducer_large/versions/1.12.0/files/stt_kab_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_be_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_be_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_be_conformer_transducer_large/versions/1.12.0/files/stt_be_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_hr_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_hr_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_hr_conformer_transducer_large/versions/1.11.0/files/stt_hr_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_it_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_it_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_it_conformer_transducer_large/versions/1.13.0/files/stt_it_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_ru_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_ru_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_ru_conformer_transducer_large/versions/1.13.0/files/stt_ru_conformer_transducer_large.nemo",
)
results.append(model)
model = PretrainedModelInfo(
pretrained_model_name="stt_eo_conformer_transducer_large",
description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_eo_conformer_transducer_large",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_eo_conformer_transducer_large/versions/1.14.0/files/stt_eo_conformer_transducer_large.nemo",
)
results.append(model)
return results
def __init__(self, cfg: DictConfig, trainer: Trainer = None):
# Convert to Hydra 1.0 compatible DictConfig
cfg = model_utils.convert_model_config_to_dict_config(cfg)
cfg = model_utils.maybe_update_config_version(cfg)
# Tokenizer is necessary for this model
if 'tokenizer' not in cfg:
raise ValueError("`cfg` must have `tokenizer` config to create a tokenizer !")
if not isinstance(cfg, DictConfig):
cfg = OmegaConf.create(cfg)
# Setup the tokenizer
self._setup_tokenizer(cfg.tokenizer)
# Initialize a dummy vocabulary
vocabulary = self.tokenizer.tokenizer.get_vocab()
# Set the new vocabulary
with open_dict(cfg):
cfg.labels = ListConfig(list(vocabulary))
with open_dict(cfg.decoder):
cfg.decoder.vocab_size = len(vocabulary)
with open_dict(cfg.joint):
cfg.joint.num_classes = len(vocabulary)
cfg.joint.vocabulary = ListConfig(list(vocabulary))
cfg.joint.jointnet.encoder_hidden = cfg.model_defaults.enc_hidden
cfg.joint.jointnet.pred_hidden = cfg.model_defaults.pred_hidden
super().__init__(cfg=cfg, trainer=trainer)
# Setup decoding object
self.decoding = RNNTBPEDecoding(
decoding_cfg=self.cfg.decoding, decoder=self.decoder, joint=self.joint, tokenizer=self.tokenizer,
)
# Setup wer object
self.wer = RNNTBPEWER(
decoding=self.decoding,
batch_dim_index=0,
use_cer=self._cfg.get('use_cer', False),
log_prediction=self._cfg.get('log_prediction', True),
dist_sync_on_step=True,
)
# Setup fused Joint step if flag is set
if self.joint.fuse_loss_wer:
self.joint.set_loss(self.loss)
self.joint.set_wer(self.wer)
def change_vocabulary(
self,
new_tokenizer_dir: Union[str, DictConfig],
new_tokenizer_type: str,
decoding_cfg: Optional[DictConfig] = None,
):
"""
Changes vocabulary used during RNNT decoding process. Use this method when fine-tuning on from pre-trained model.
This method changes only decoder and leaves encoder and pre-processing modules unchanged. For example, you would
use it if you want to use pretrained encoder when fine-tuning on data in another language, or when you'd need
model to learn capitalization, punctuation and/or special characters.
Args:
new_tokenizer_dir: Directory path to tokenizer or a config for a new tokenizer (if the tokenizer type is `agg`)
new_tokenizer_type: Type of tokenizer. Can be either `agg`, `bpe` or `wpe`.
decoding_cfg: A config for the decoder, which is optional. If the decoding type
needs to be changed (from say Greedy to Beam decoding etc), the config can be passed here.
Returns: None
"""
if isinstance(new_tokenizer_dir, DictConfig):
if new_tokenizer_type == 'agg':
new_tokenizer_cfg = new_tokenizer_dir
else:
raise ValueError(
f'New tokenizer dir should be a string unless the tokenizer is `agg`, but this tokenizer type is: {new_tokenizer_type}'
)
else:
new_tokenizer_cfg = None
if new_tokenizer_cfg is not None:
tokenizer_cfg = new_tokenizer_cfg
else:
if not os.path.isdir(new_tokenizer_dir):
raise NotADirectoryError(
f'New tokenizer dir must be non-empty path to a directory. But I got: {new_tokenizer_dir}'
)
if new_tokenizer_type.lower() not in ('bpe', 'wpe'):
raise ValueError(f'New tokenizer type must be either `bpe` or `wpe`')
tokenizer_cfg = OmegaConf.create({'dir': new_tokenizer_dir, 'type': new_tokenizer_type})
# Setup the tokenizer
self._setup_tokenizer(tokenizer_cfg)
# Initialize a dummy vocabulary
vocabulary = self.tokenizer.tokenizer.get_vocab()
joint_config = self.joint.to_config_dict()
new_joint_config = copy.deepcopy(joint_config)
if self.tokenizer_type == "agg":
new_joint_config["vocabulary"] = ListConfig(vocabulary)
else:
new_joint_config["vocabulary"] = ListConfig(list(vocabulary.keys()))
new_joint_config['num_classes'] = len(vocabulary)
del self.joint
self.joint = EncDecRNNTBPEModel.from_config_dict(new_joint_config)
decoder_config = self.decoder.to_config_dict()
new_decoder_config = copy.deepcopy(decoder_config)
new_decoder_config.vocab_size = len(vocabulary)
del self.decoder
self.decoder = EncDecRNNTBPEModel.from_config_dict(new_decoder_config)
del self.loss
self.loss = RNNTLoss(num_classes=self.joint.num_classes_with_blank - 1)
if decoding_cfg is None:
# Assume same decoding config as before
decoding_cfg = self.cfg.decoding
# Assert the decoding config with all hyper parameters
decoding_cls = OmegaConf.structured(RNNTBPEDecodingConfig)
decoding_cls = OmegaConf.create(OmegaConf.to_container(decoding_cls))
decoding_cfg = OmegaConf.merge(decoding_cls, decoding_cfg)
self.decoding = RNNTBPEDecoding(
decoding_cfg=decoding_cfg, decoder=self.decoder, joint=self.joint, tokenizer=self.tokenizer,
)
self.wer = RNNTBPEWER(
decoding=self.decoding,
batch_dim_index=self.wer.batch_dim_index,
use_cer=self.wer.use_cer,
log_prediction=self.wer.log_prediction,
dist_sync_on_step=True,
)
# Setup fused Joint step
if self.joint.fuse_loss_wer or (
self.decoding.joint_fused_batch_size is not None and self.decoding.joint_fused_batch_size > 0
):
self.joint.set_loss(self.loss)
self.joint.set_wer(self.wer)
# Update config
with open_dict(self.cfg.joint):
self.cfg.joint = new_joint_config
with open_dict(self.cfg.decoder):
self.cfg.decoder = new_decoder_config
with open_dict(self.cfg.decoding):
self.cfg.decoding = decoding_cfg
logging.info(f"Changed decoder to output to {self.joint.vocabulary} vocabulary.")
def change_decoding_strategy(self, decoding_cfg: DictConfig):
"""
Changes decoding strategy used during RNNT decoding process.
Args:
decoding_cfg: A config for the decoder, which is optional. If the decoding type
needs to be changed (from say Greedy to Beam decoding etc), the config can be passed here.
"""
if decoding_cfg is None:
# Assume same decoding config as before
logging.info("No `decoding_cfg` passed when changing decoding strategy, using internal config")
decoding_cfg = self.cfg.decoding
# Assert the decoding config with all hyper parameters
decoding_cls = OmegaConf.structured(RNNTBPEDecodingConfig)
decoding_cls = OmegaConf.create(OmegaConf.to_container(decoding_cls))
decoding_cfg = OmegaConf.merge(decoding_cls, decoding_cfg)
self.decoding = RNNTBPEDecoding(
decoding_cfg=decoding_cfg, decoder=self.decoder, joint=self.joint, tokenizer=self.tokenizer,
)
self.wer = RNNTBPEWER(
decoding=self.decoding,
batch_dim_index=self.wer.batch_dim_index,
use_cer=self.wer.use_cer,
log_prediction=self.wer.log_prediction,
dist_sync_on_step=True,
)
# Setup fused Joint step
if self.joint.fuse_loss_wer or (
self.decoding.joint_fused_batch_size is not None and self.decoding.joint_fused_batch_size > 0
):
self.joint.set_loss(self.loss)
self.joint.set_wer(self.wer)
# Update config
with open_dict(self.cfg.decoding):
self.cfg.decoding = decoding_cfg
logging.info(f"Changed decoding strategy to \n{OmegaConf.to_yaml(self.cfg.decoding)}")
def _setup_dataloader_from_config(self, config: Optional[Dict]):
dataset = audio_to_text_dataset.get_audio_to_text_bpe_dataset_from_config(
config=config,
local_rank=self.local_rank,
global_rank=self.global_rank,
world_size=self.world_size,
tokenizer=self.tokenizer,
preprocessor_cfg=self.cfg.get("preprocessor", None),
)
if dataset is None:
return None
if isinstance(dataset, AudioToBPEDALIDataset):
# DALI Dataset implements dataloader interface
return dataset
shuffle = config['shuffle']
if config.get('is_tarred', False):
shuffle = False
if hasattr(dataset, 'collate_fn'):
collate_fn = dataset.collate_fn
else:
collate_fn = dataset.datasets[0].collate_fn
return torch.utils.data.DataLoader(
dataset=dataset,
batch_size=config['batch_size'],
collate_fn=collate_fn,
drop_last=config.get('drop_last', False),
shuffle=shuffle,
num_workers=config.get('num_workers', 0),
pin_memory=config.get('pin_memory', False),
)
def _setup_transcribe_dataloader(self, config: Dict) -> 'torch.utils.data.DataLoader':
"""
Setup function for a temporary data loader which wraps the provided audio file.
Args:
config: A python dictionary which contains the following keys:
paths2audio_files: (a list) of paths to audio files. The files should be relatively short fragments. \
Recommended length per file is between 5 and 25 seconds.
batch_size: (int) batch size to use during inference. \
Bigger will result in better throughput performance but would use more memory.
temp_dir: (str) A temporary directory where the audio manifest is temporarily
stored.
Returns:
A pytorch DataLoader for the given audio file(s).
"""
if 'manifest_filepath' in config:
manifest_filepath = config['manifest_filepath']
batch_size = config['batch_size']
else:
manifest_filepath = os.path.join(config['temp_dir'], 'manifest.json')
batch_size = min(config['batch_size'], len(config['paths2audio_files']))
dl_config = {
'manifest_filepath': manifest_filepath,
'sample_rate': self.preprocessor._sample_rate,
'batch_size': batch_size,
'shuffle': False,
'num_workers': config.get('num_workers', min(batch_size, os.cpu_count() - 1)),
'pin_memory': True,
'channel_selector': config.get('channel_selector', None),
'use_start_end_token': self.cfg.validation_ds.get('use_start_end_token', False),
}
if config.get("augmentor"):
dl_config['augmentor'] = config.get("augmentor")
temporary_datalayer = self._setup_dataloader_from_config(config=DictConfig(dl_config))
return temporary_datalayer
|