File size: 26,544 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import os
from typing import Dict, List, Optional, Union

import torch
from omegaconf import DictConfig, ListConfig, OmegaConf, open_dict
from pytorch_lightning import Trainer

from nemo.collections.asr.data import audio_to_text_dataset
from nemo.collections.asr.data.audio_to_text_dali import AudioToBPEDALIDataset
from nemo.collections.asr.losses.rnnt import RNNTLoss
from nemo.collections.asr.metrics.rnnt_wer_bpe import RNNTBPEWER, RNNTBPEDecoding, RNNTBPEDecodingConfig
from nemo.collections.asr.models.rnnt_models import EncDecRNNTModel
from nemo.collections.asr.parts.mixins import ASRBPEMixin
from nemo.core.classes.common import PretrainedModelInfo
from nemo.utils import logging, model_utils


class EncDecRNNTBPEModel(EncDecRNNTModel, ASRBPEMixin):
    """Base class for encoder decoder RNNT-based models with subword tokenization."""

    @classmethod
    def list_available_models(cls) -> List[PretrainedModelInfo]:
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.

        Returns:
            List of available pre-trained models.
        """
        results = []

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_contextnet_256",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_256",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_256/versions/1.6.0/files/stt_en_contextnet_256.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_contextnet_512",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_512",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_512/versions/1.6.0/files/stt_en_contextnet_512.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_contextnet_1024",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_1024",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_1024/versions/1.9.0/files/stt_en_contextnet_1024.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_contextnet_256_mls",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_256_mls",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_256_mls/versions/1.0.0/files/stt_en_contextnet_256_mls.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_contextnet_512_mls",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_512_mls",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_512_mls/versions/1.0.0/files/stt_en_contextnet_512_mls.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_contextnet_1024_mls",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_contextnet_1024_mls",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_contextnet_1024_mls/versions/1.0.0/files/stt_en_contextnet_1024_mls.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_conformer_transducer_small",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_small",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_small/versions/1.6.0/files/stt_en_conformer_transducer_small.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_conformer_transducer_medium",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_medium",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_medium/versions/1.6.0/files/stt_en_conformer_transducer_medium.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_large/versions/1.10.0/files/stt_en_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_conformer_transducer_large_ls",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_large_ls",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_large_ls/versions/1.8.0/files/stt_en_conformer_transducer_large_ls.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_conformer_transducer_xlarge",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_xlarge",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_xlarge/versions/1.10.0/files/stt_en_conformer_transducer_xlarge.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_en_conformer_transducer_xxlarge",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_conformer_transducer_xxlarge",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_en_conformer_transducer_xxlarge/versions/1.8.0/files/stt_en_conformer_transducer_xxlarge.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_de_contextnet_1024",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_de_contextnet_1024",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_de_contextnet_1024/versions/1.4.0/files/stt_de_contextnet_1024.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_fr_contextnet_1024",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_fr_contextnet_1024",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_fr_contextnet_1024/versions/1.5/files/stt_fr_contextnet_1024.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_es_contextnet_1024",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_es_contextnet_1024",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_es_contextnet_1024/versions/1.8.0/files/stt_es_contextnet_1024.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_de_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_de_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_de_conformer_transducer_large/versions/1.5.0/files/stt_de_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_fr_conformer_transducer_large",
            description="For details about this model, please visit https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/stt_fr_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_fr_conformer_transducer_large/versions/1.5/files/stt_fr_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_es_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_es_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_es_conformer_transducer_large/versions/1.8.0/files/stt_es_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_enes_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_enes_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_enes_conformer_transducer_large/versions/1.0.0/files/stt_enes_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_enes_contextnet_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_enes_contextnet_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_enes_contextnet_large/versions/1.0.0/files/stt_enes_contextnet_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_ca_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_ca_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_ca_conformer_transducer_large/versions/1.11.0/files/stt_ca_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_rw_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_rw_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_rw_conformer_transducer_large/versions/1.11.0/files/stt_rw_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_enes_conformer_transducer_large_codesw",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_enes_conformer_transducer_large_codesw",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_enes_conformer_transducer_large_codesw/versions/1.0.0/files/stt_enes_conformer_transducer_large_codesw.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_kab_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_kab_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_kab_conformer_transducer_large/versions/1.12.0/files/stt_kab_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_be_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_be_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_be_conformer_transducer_large/versions/1.12.0/files/stt_be_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_hr_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_hr_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_hr_conformer_transducer_large/versions/1.11.0/files/stt_hr_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_it_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_it_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_it_conformer_transducer_large/versions/1.13.0/files/stt_it_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_ru_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_ru_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_ru_conformer_transducer_large/versions/1.13.0/files/stt_ru_conformer_transducer_large.nemo",
        )
        results.append(model)

        model = PretrainedModelInfo(
            pretrained_model_name="stt_eo_conformer_transducer_large",
            description="For details about this model, please visit https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_eo_conformer_transducer_large",
            location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/stt_eo_conformer_transducer_large/versions/1.14.0/files/stt_eo_conformer_transducer_large.nemo",
        )
        results.append(model)

        return results

    def __init__(self, cfg: DictConfig, trainer: Trainer = None):
        # Convert to Hydra 1.0 compatible DictConfig
        cfg = model_utils.convert_model_config_to_dict_config(cfg)
        cfg = model_utils.maybe_update_config_version(cfg)

        # Tokenizer is necessary for this model
        if 'tokenizer' not in cfg:
            raise ValueError("`cfg` must have `tokenizer` config to create a tokenizer !")

        if not isinstance(cfg, DictConfig):
            cfg = OmegaConf.create(cfg)

        # Setup the tokenizer
        self._setup_tokenizer(cfg.tokenizer)

        # Initialize a dummy vocabulary
        vocabulary = self.tokenizer.tokenizer.get_vocab()

        # Set the new vocabulary
        with open_dict(cfg):
            cfg.labels = ListConfig(list(vocabulary))

        with open_dict(cfg.decoder):
            cfg.decoder.vocab_size = len(vocabulary)

        with open_dict(cfg.joint):
            cfg.joint.num_classes = len(vocabulary)
            cfg.joint.vocabulary = ListConfig(list(vocabulary))
            cfg.joint.jointnet.encoder_hidden = cfg.model_defaults.enc_hidden
            cfg.joint.jointnet.pred_hidden = cfg.model_defaults.pred_hidden

        super().__init__(cfg=cfg, trainer=trainer)

        # Setup decoding object
        self.decoding = RNNTBPEDecoding(
            decoding_cfg=self.cfg.decoding, decoder=self.decoder, joint=self.joint, tokenizer=self.tokenizer,
        )

        # Setup wer object
        self.wer = RNNTBPEWER(
            decoding=self.decoding,
            batch_dim_index=0,
            use_cer=self._cfg.get('use_cer', False),
            log_prediction=self._cfg.get('log_prediction', True),
            dist_sync_on_step=True,
        )

        # Setup fused Joint step if flag is set
        if self.joint.fuse_loss_wer:
            self.joint.set_loss(self.loss)
            self.joint.set_wer(self.wer)

    def change_vocabulary(
        self,
        new_tokenizer_dir: Union[str, DictConfig],
        new_tokenizer_type: str,
        decoding_cfg: Optional[DictConfig] = None,
    ):
        """
        Changes vocabulary used during RNNT decoding process. Use this method when fine-tuning on from pre-trained model.
        This method changes only decoder and leaves encoder and pre-processing modules unchanged. For example, you would
        use it if you want to use pretrained encoder when fine-tuning on data in another language, or when you'd need
        model to learn capitalization, punctuation and/or special characters.

        Args:
            new_tokenizer_dir: Directory path to tokenizer or a config for a new tokenizer (if the tokenizer type is `agg`)
            new_tokenizer_type: Type of tokenizer. Can be either `agg`, `bpe` or `wpe`.
            decoding_cfg: A config for the decoder, which is optional. If the decoding type
                needs to be changed (from say Greedy to Beam decoding etc), the config can be passed here.

        Returns: None

        """
        if isinstance(new_tokenizer_dir, DictConfig):
            if new_tokenizer_type == 'agg':
                new_tokenizer_cfg = new_tokenizer_dir
            else:
                raise ValueError(
                    f'New tokenizer dir should be a string unless the tokenizer is `agg`, but this tokenizer type is: {new_tokenizer_type}'
                )
        else:
            new_tokenizer_cfg = None

        if new_tokenizer_cfg is not None:
            tokenizer_cfg = new_tokenizer_cfg
        else:
            if not os.path.isdir(new_tokenizer_dir):
                raise NotADirectoryError(
                    f'New tokenizer dir must be non-empty path to a directory. But I got: {new_tokenizer_dir}'
                )

            if new_tokenizer_type.lower() not in ('bpe', 'wpe'):
                raise ValueError(f'New tokenizer type must be either `bpe` or `wpe`')

            tokenizer_cfg = OmegaConf.create({'dir': new_tokenizer_dir, 'type': new_tokenizer_type})

        # Setup the tokenizer
        self._setup_tokenizer(tokenizer_cfg)

        # Initialize a dummy vocabulary
        vocabulary = self.tokenizer.tokenizer.get_vocab()

        joint_config = self.joint.to_config_dict()
        new_joint_config = copy.deepcopy(joint_config)
        if self.tokenizer_type == "agg":
            new_joint_config["vocabulary"] = ListConfig(vocabulary)
        else:
            new_joint_config["vocabulary"] = ListConfig(list(vocabulary.keys()))

        new_joint_config['num_classes'] = len(vocabulary)
        del self.joint
        self.joint = EncDecRNNTBPEModel.from_config_dict(new_joint_config)

        decoder_config = self.decoder.to_config_dict()
        new_decoder_config = copy.deepcopy(decoder_config)
        new_decoder_config.vocab_size = len(vocabulary)
        del self.decoder
        self.decoder = EncDecRNNTBPEModel.from_config_dict(new_decoder_config)

        del self.loss
        self.loss = RNNTLoss(num_classes=self.joint.num_classes_with_blank - 1)

        if decoding_cfg is None:
            # Assume same decoding config as before
            decoding_cfg = self.cfg.decoding

        # Assert the decoding config with all hyper parameters
        decoding_cls = OmegaConf.structured(RNNTBPEDecodingConfig)
        decoding_cls = OmegaConf.create(OmegaConf.to_container(decoding_cls))
        decoding_cfg = OmegaConf.merge(decoding_cls, decoding_cfg)

        self.decoding = RNNTBPEDecoding(
            decoding_cfg=decoding_cfg, decoder=self.decoder, joint=self.joint, tokenizer=self.tokenizer,
        )

        self.wer = RNNTBPEWER(
            decoding=self.decoding,
            batch_dim_index=self.wer.batch_dim_index,
            use_cer=self.wer.use_cer,
            log_prediction=self.wer.log_prediction,
            dist_sync_on_step=True,
        )

        # Setup fused Joint step
        if self.joint.fuse_loss_wer or (
            self.decoding.joint_fused_batch_size is not None and self.decoding.joint_fused_batch_size > 0
        ):
            self.joint.set_loss(self.loss)
            self.joint.set_wer(self.wer)

        # Update config
        with open_dict(self.cfg.joint):
            self.cfg.joint = new_joint_config

        with open_dict(self.cfg.decoder):
            self.cfg.decoder = new_decoder_config

        with open_dict(self.cfg.decoding):
            self.cfg.decoding = decoding_cfg

        logging.info(f"Changed decoder to output to {self.joint.vocabulary} vocabulary.")

    def change_decoding_strategy(self, decoding_cfg: DictConfig):
        """
        Changes decoding strategy used during RNNT decoding process.

        Args:
            decoding_cfg: A config for the decoder, which is optional. If the decoding type
                needs to be changed (from say Greedy to Beam decoding etc), the config can be passed here.
        """
        if decoding_cfg is None:
            # Assume same decoding config as before
            logging.info("No `decoding_cfg` passed when changing decoding strategy, using internal config")
            decoding_cfg = self.cfg.decoding

        # Assert the decoding config with all hyper parameters
        decoding_cls = OmegaConf.structured(RNNTBPEDecodingConfig)
        decoding_cls = OmegaConf.create(OmegaConf.to_container(decoding_cls))
        decoding_cfg = OmegaConf.merge(decoding_cls, decoding_cfg)

        self.decoding = RNNTBPEDecoding(
            decoding_cfg=decoding_cfg, decoder=self.decoder, joint=self.joint, tokenizer=self.tokenizer,
        )

        self.wer = RNNTBPEWER(
            decoding=self.decoding,
            batch_dim_index=self.wer.batch_dim_index,
            use_cer=self.wer.use_cer,
            log_prediction=self.wer.log_prediction,
            dist_sync_on_step=True,
        )

        # Setup fused Joint step
        if self.joint.fuse_loss_wer or (
            self.decoding.joint_fused_batch_size is not None and self.decoding.joint_fused_batch_size > 0
        ):
            self.joint.set_loss(self.loss)
            self.joint.set_wer(self.wer)

        # Update config
        with open_dict(self.cfg.decoding):
            self.cfg.decoding = decoding_cfg

        logging.info(f"Changed decoding strategy to \n{OmegaConf.to_yaml(self.cfg.decoding)}")

    def _setup_dataloader_from_config(self, config: Optional[Dict]):
        dataset = audio_to_text_dataset.get_audio_to_text_bpe_dataset_from_config(
            config=config,
            local_rank=self.local_rank,
            global_rank=self.global_rank,
            world_size=self.world_size,
            tokenizer=self.tokenizer,
            preprocessor_cfg=self.cfg.get("preprocessor", None),
        )

        if dataset is None:
            return None

        if isinstance(dataset, AudioToBPEDALIDataset):
            # DALI Dataset implements dataloader interface
            return dataset

        shuffle = config['shuffle']
        if config.get('is_tarred', False):
            shuffle = False

        if hasattr(dataset, 'collate_fn'):
            collate_fn = dataset.collate_fn
        else:
            collate_fn = dataset.datasets[0].collate_fn

        return torch.utils.data.DataLoader(
            dataset=dataset,
            batch_size=config['batch_size'],
            collate_fn=collate_fn,
            drop_last=config.get('drop_last', False),
            shuffle=shuffle,
            num_workers=config.get('num_workers', 0),
            pin_memory=config.get('pin_memory', False),
        )

    def _setup_transcribe_dataloader(self, config: Dict) -> 'torch.utils.data.DataLoader':
        """
        Setup function for a temporary data loader which wraps the provided audio file.

        Args:
            config: A python dictionary which contains the following keys:
            paths2audio_files: (a list) of paths to audio files. The files should be relatively short fragments. \
                Recommended length per file is between 5 and 25 seconds.
            batch_size: (int) batch size to use during inference. \
                Bigger will result in better throughput performance but would use more memory.
            temp_dir: (str) A temporary directory where the audio manifest is temporarily
                stored.

        Returns:
            A pytorch DataLoader for the given audio file(s).
        """
        if 'manifest_filepath' in config:
            manifest_filepath = config['manifest_filepath']
            batch_size = config['batch_size']
        else:
            manifest_filepath = os.path.join(config['temp_dir'], 'manifest.json')
            batch_size = min(config['batch_size'], len(config['paths2audio_files']))

        dl_config = {
            'manifest_filepath': manifest_filepath,
            'sample_rate': self.preprocessor._sample_rate,
            'batch_size': batch_size,
            'shuffle': False,
            'num_workers': config.get('num_workers', min(batch_size, os.cpu_count() - 1)),
            'pin_memory': True,
            'channel_selector': config.get('channel_selector', None),
            'use_start_end_token': self.cfg.validation_ds.get('use_start_end_token', False),
        }

        if config.get("augmentor"):
            dl_config['augmentor'] = config.get("augmentor")

        temporary_datalayer = self._setup_dataloader_from_config(config=DictConfig(dl_config))
        return temporary_datalayer