File size: 5,324 Bytes
7934b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
from pydoc import doc

import pytest

from nemo.collections.nlp.data.question_answering_squad.qa_dataset import SquadDataset
from nemo.collections.nlp.data.question_answering_squad.qa_squad_processing import (
    _get_tokens,
    exact_match_score,
    f1_score,
)


@pytest.mark.unit
def test_get_tokens():
    sentence = 'I am happy'
    tokens = ['i', 'am', 'happy']
    assert tokens == _get_tokens(sentence)

    sentence = 'I am a person'
    tokens = ['i', 'am', 'person']
    assert tokens == _get_tokens(sentence)

    sentence = 'I am a person.'
    tokens = ['i', 'am', 'person']
    assert tokens == _get_tokens(sentence)


@pytest.mark.unit
def test_f1_score():

    generated_field = 'That is so good'
    ground_truth_field = 'That is so awesome'

    f1 = f1_score(generated_field, ground_truth_field)
    assert f1 == 0.75

    generated_field = ''
    ground_truth_field = 'That'

    f1 = f1_score(generated_field, ground_truth_field)
    assert f1 == 0


@pytest.mark.unit
def test_exact_match_score():

    generated_field = 'That is so good'
    ground_truth_field = 'That is so awesome'

    em = exact_match_score(generated_field, ground_truth_field)
    assert em == 0

    generated_field = 'That is so good!'
    ground_truth_field = 'That is so good.'

    em = exact_match_score(generated_field, ground_truth_field)
    assert em == 1

    generated_field = 'That is so good'
    ground_truth_field = 'that is so good'

    em = exact_match_score(generated_field, ground_truth_field)
    assert em == 1


@pytest.mark.unit
def test_split_into_words():
    text = 'hi yo'
    char_to_word_offset = [0, 0, 0, 1, 1]
    doc_tokens = ["hi", "yo"]
    output = SquadDataset.split_into_words(text)
    assert output[0] == doc_tokens
    assert output[1] == char_to_word_offset

    text = 'i am good'
    char_to_word_offset = [0, 0, 1, 1, 1, 2, 2, 2, 2]
    doc_tokens = ["i", "am", 'good']
    output = SquadDataset.split_into_words(text)
    assert output[0] == doc_tokens
    assert output[1] == char_to_word_offset


@pytest.mark.unit
def test_get_doc_spans():
    all_doc_tokens = ['a'] * 15
    max_tokens_for_doc = 10
    doc_stride = 5
    doc_spans = SquadDataset.get_docspans(all_doc_tokens, max_tokens_for_doc, doc_stride)

    assert len(doc_spans) == 2
    assert doc_spans[0].start == 0
    assert doc_spans[0].length == 10
    assert doc_spans[1].start == 5
    assert doc_spans[1].length == 10


@pytest.mark.unit
def test_get_average_dist_to_tok_start_and_end():
    _DocSpan = collections.namedtuple("DocSpan", ["start", "length"])

    doc_span = _DocSpan(start=0, length=5)

    tok_start_position = 1
    tok_end_position = 3

    assert 2 == SquadDataset.get_average_dist_to_tok_start_and_end(doc_span, tok_start_position, tok_end_position)

    doc_span = _DocSpan(start=5, length=5)

    tok_start_position = 1
    tok_end_position = 2

    assert 6 == SquadDataset.get_average_dist_to_tok_start_and_end(doc_span, tok_start_position, tok_end_position)

    doc_span = _DocSpan(start=5, length=4)

    tok_start_position = 1
    tok_end_position = 2

    assert 5 == SquadDataset.get_average_dist_to_tok_start_and_end(doc_span, tok_start_position, tok_end_position)


@pytest.mark.unit
def test_keep_relevant_docspans():

    _DocSpan = collections.namedtuple("DocSpan", ["start", "length"])

    doc_spans = [_DocSpan(start=start, length=5) for start in range(15)]

    tok_start_position = 1
    tok_end_position = 2

    mode = 'all'
    assert doc_spans == SquadDataset.keep_relevant_docspans(doc_spans, tok_start_position, tok_end_position, mode)

    doc_spans = [_DocSpan(start=start, length=5) for start in range(15)]

    tok_start_position = -1
    tok_end_position = -1

    mode = 'only_positive'

    expected_doc_spans = []
    assert expected_doc_spans == SquadDataset.keep_relevant_docspans(
        doc_spans, tok_start_position, tok_end_position, mode
    )

    doc_spans = [_DocSpan(start=start, length=5) for start in range(15)]

    tok_start_position = 1
    tok_end_position = 2

    mode = 'only_positive'

    expected_doc_spans = [_DocSpan(start=0, length=5), _DocSpan(start=1, length=5)]
    assert expected_doc_spans == SquadDataset.keep_relevant_docspans(
        doc_spans, tok_start_position, tok_end_position, mode
    )

    doc_spans = [_DocSpan(start=start, length=5) for start in range(15)]

    tok_start_position = 1
    tok_end_position = 2

    mode = 'limited_negative'

    expected_doc_spans = [_DocSpan(start=start, length=5) for start in range(10)]
    assert expected_doc_spans == SquadDataset.keep_relevant_docspans(
        doc_spans, tok_start_position, tok_end_position, mode
    )