|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import collections |
|
|
|
import pytest |
|
import torch |
|
|
|
from nemo.collections.nlp.data.question_answering.dataset.qa_dataset import QADataset |
|
from nemo.collections.nlp.data.question_answering.dataset.qa_gpt_dataset import GPTQADataset |
|
from nemo.collections.nlp.metrics.qa_metrics import QAMetrics |
|
|
|
|
|
@pytest.mark.unit |
|
def test_remove_articles(): |
|
sentences = [ |
|
"this is an apple", |
|
"this is the apple", |
|
"this is a fruit", |
|
] |
|
|
|
expected_article_removed_sents = ["this is apple", "this is apple", "this is fruit"] |
|
|
|
article_removed_sents = [QAMetrics.remove_articles(sent) for sent in sentences] |
|
|
|
assert article_removed_sents == expected_article_removed_sents |
|
|
|
|
|
@pytest.mark.unit |
|
def test_white_space_fix(): |
|
sentences = [ |
|
"sentence with a space", |
|
"sentence with multiple spaces", |
|
] |
|
|
|
expected_white_space_fixed_sents = [ |
|
"sentence with a space", |
|
"sentence with multiple spaces", |
|
] |
|
|
|
white_space_fixed_sents = [QAMetrics.white_space_fix(sent) for sent in sentences] |
|
|
|
assert white_space_fixed_sents == expected_white_space_fixed_sents |
|
|
|
|
|
@pytest.mark.unit |
|
def test_remove_punc(): |
|
sentence = "this, is. a! sentence: with; punctuations?" |
|
expected_punc_removed_sent = "this is a sentence with punctuations" |
|
|
|
punc_removed_sent = QAMetrics.remove_punc(sentence) |
|
|
|
assert punc_removed_sent == expected_punc_removed_sent |
|
|
|
|
|
@pytest.mark.unit |
|
def test_get_normalized_tokens(): |
|
sentence = 'I am happy' |
|
tokens = ['i', 'am', 'happy'] |
|
assert tokens == QAMetrics._get_normalized_tokens(sentence) |
|
|
|
sentence = 'I am a person' |
|
tokens = ['i', 'am', 'person'] |
|
assert tokens == QAMetrics._get_normalized_tokens(sentence) |
|
|
|
sentence = 'I am a person.' |
|
tokens = ['i', 'am', 'person'] |
|
assert tokens == QAMetrics._get_normalized_tokens(sentence) |
|
|
|
|
|
@pytest.mark.unit |
|
def test_get_one_f1(): |
|
generated_field = 'That is so good' |
|
ground_truth_field = 'That is so awesome' |
|
|
|
f1 = QAMetrics.get_one_f1(generated_field, ground_truth_field) |
|
assert f1 == 0.75 |
|
|
|
generated_field = '' |
|
ground_truth_field = 'That' |
|
|
|
f1 = QAMetrics.get_one_f1(generated_field, ground_truth_field) |
|
assert f1 == 0 |
|
|
|
|
|
@pytest.mark.unit |
|
def test_get_one_exact_match(): |
|
generated_field = 'That is so good' |
|
ground_truth_field = 'That is so awesome' |
|
|
|
em = QAMetrics.get_one_exact_match(generated_field, ground_truth_field) |
|
assert em == 0 |
|
|
|
generated_field = 'That is so good!' |
|
ground_truth_field = 'That is so good.' |
|
|
|
em = QAMetrics.get_one_exact_match(generated_field, ground_truth_field) |
|
assert em == 1 |
|
|
|
generated_field = 'That is so good' |
|
ground_truth_field = 'that is so good' |
|
|
|
em = QAMetrics.get_one_exact_match(generated_field, ground_truth_field) |
|
assert em == 1 |
|
|
|
|
|
@pytest.mark.unit |
|
def test_split_into_words(): |
|
text = 'hi yo' |
|
char_to_word_offset = [0, 0, 0, 1, 1] |
|
doc_tokens = ["hi", "yo"] |
|
output = QADataset.split_into_words(text) |
|
assert output[0] == doc_tokens |
|
assert output[1] == char_to_word_offset |
|
|
|
text = 'i am good' |
|
char_to_word_offset = [0, 0, 1, 1, 1, 2, 2, 2, 2] |
|
doc_tokens = ["i", "am", 'good'] |
|
output = QADataset.split_into_words(text) |
|
assert output[0] == doc_tokens |
|
assert output[1] == char_to_word_offset |
|
|
|
|
|
@pytest.mark.unit |
|
def test_get_doc_spans(): |
|
all_doc_tokens = ['a'] * 15 |
|
max_tokens_for_doc = 10 |
|
doc_stride = 5 |
|
doc_spans = QADataset.get_docspans(all_doc_tokens, max_tokens_for_doc, doc_stride) |
|
|
|
assert len(doc_spans) == 2 |
|
assert doc_spans[0].start == 0 |
|
assert doc_spans[0].length == 10 |
|
assert doc_spans[1].start == 5 |
|
assert doc_spans[1].length == 10 |
|
|
|
|
|
@pytest.mark.unit |
|
def test_get_average_dist_to_tok_start_and_end(): |
|
_DocSpan = collections.namedtuple("DocSpan", ["start", "length"]) |
|
|
|
doc_span = _DocSpan(start=0, length=5) |
|
|
|
tok_start_position = 1 |
|
tok_end_position = 3 |
|
|
|
assert 2 == QADataset.get_average_dist_to_tok_start_and_end(doc_span, tok_start_position, tok_end_position) |
|
|
|
doc_span = _DocSpan(start=5, length=5) |
|
|
|
tok_start_position = 1 |
|
tok_end_position = 2 |
|
|
|
assert 6 == QADataset.get_average_dist_to_tok_start_and_end(doc_span, tok_start_position, tok_end_position) |
|
|
|
doc_span = _DocSpan(start=5, length=4) |
|
|
|
tok_start_position = 1 |
|
tok_end_position = 2 |
|
|
|
assert 5 == QADataset.get_average_dist_to_tok_start_and_end(doc_span, tok_start_position, tok_end_position) |
|
|
|
|
|
@pytest.mark.unit |
|
def test_keep_relevant_docspans(): |
|
|
|
_DocSpan = collections.namedtuple("DocSpan", ["start", "length"]) |
|
|
|
doc_spans = [_DocSpan(start=start, length=5) for start in range(15)] |
|
|
|
tok_start_position = 1 |
|
tok_end_position = 2 |
|
|
|
mode = 'all' |
|
assert doc_spans == QADataset.keep_relevant_docspans(doc_spans, tok_start_position, tok_end_position, mode) |
|
|
|
doc_spans = [_DocSpan(start=start, length=5) for start in range(15)] |
|
|
|
tok_start_position = -1 |
|
tok_end_position = -1 |
|
|
|
mode = 'only_positive' |
|
|
|
expected_doc_spans = [] |
|
assert expected_doc_spans == QADataset.keep_relevant_docspans( |
|
doc_spans, tok_start_position, tok_end_position, mode |
|
) |
|
|
|
doc_spans = [_DocSpan(start=start, length=5) for start in range(15)] |
|
|
|
tok_start_position = 1 |
|
tok_end_position = 2 |
|
|
|
mode = 'only_positive' |
|
|
|
expected_doc_spans = [_DocSpan(start=0, length=5), _DocSpan(start=1, length=5)] |
|
assert expected_doc_spans == QADataset.keep_relevant_docspans( |
|
doc_spans, tok_start_position, tok_end_position, mode |
|
) |
|
|
|
doc_spans = [_DocSpan(start=start, length=5) for start in range(15)] |
|
|
|
tok_start_position = 1 |
|
tok_end_position = 2 |
|
|
|
mode = 'limited_negative' |
|
|
|
expected_doc_spans = [_DocSpan(start=start, length=5) for start in range(10)] |
|
assert expected_doc_spans == QADataset.keep_relevant_docspans( |
|
doc_spans, tok_start_position, tok_end_position, mode |
|
) |
|
|
|
|
|
@pytest.mark.unit |
|
def test_gpt_no_pad_loss_masking(): |
|
input_ids = [1] * 15 + [50257] * 15 |
|
input_ids = torch.tensor(input_ids) |
|
|
|
input_attn_mask = [1] * 16 + [0] * 14 |
|
input_attn_mask = torch.Tensor(input_attn_mask) |
|
|
|
training_mask_end = 10 |
|
|
|
expected_labels = [-100] * 10 + [1] * 5 + [50257] + [-100] * 14 |
|
expected_labels = torch.tensor(expected_labels) |
|
|
|
labels = GPTQADataset.update_labels_for_no_pad_loss(input_ids, training_mask_end, input_attn_mask) |
|
|
|
assert torch.all(labels.eq(expected_labels)) |
|
|