# This configuration contains the default values for training a multichannel speech enhancement model. # name: "multichannel_enhancement" model: sample_rate: 16000 skip_nan_grad: false num_outputs: 1 train_ds: manifest_filepath: ??? input_key: audio_filepath # key of the input signal path in the manifest target_key: target_filepath # key of the target signal path in the manifest target_channel_selector: 0 # target signal is the first channel from files in target_key audio_duration: 4.0 # in seconds, audio segment duration for training random_offset: true # if the file is longer than audio_duration, use random offset to select a subsegment min_duration: ${model.train_ds.audio_duration} batch_size: 64 # batch size may be increased based on the available memory shuffle: true num_workers: 8 pin_memory: true validation_ds: manifest_filepath: ??? input_key: audio_filepath # key of the input signal path in the manifest target_key: target_filepath target_channel_selector: 0 # target signal is the first channel from files in target_key batch_size: 1 # batch size may be increased based on the available memory shuffle: false num_workers: 4 pin_memory: true test_ds: manifest_filepath: ??? input_key: audio_filepath # key of the input signal path in the manifest target_key: target_filepath # key of the target signal path in the manifest target_channel_selector: 0 # target signal is the first channel from files in target_key batch_size: 1 # batch size may be increased based on the available memory shuffle: false num_workers: 4 pin_memory: true encoder: _target_: nemo.collections.asr.modules.audio_preprocessing.AudioToSpectrogram fft_length: 512 # Length of the window and FFT for calculating spectrogram hop_length: 256 # Hop length for calculating spectrogram power: null decoder: _target_: nemo.collections.asr.modules.audio_preprocessing.SpectrogramToAudio fft_length: 512 # Length of the window and FFT for calculating spectrogram hop_length: 256 # Hop length for calculating spectrogram mask_estimator: _target_: nemo.collections.asr.modules.audio_modules.MaskEstimatorRNN num_outputs: ${model.num_outputs} num_subbands: 257 # Number of subbands of the input spectrogram num_features: 256 # Number of features at RNN input num_layers: 5 # Number of RNN layers bidirectional: true # Use bi-directional RNN mask_processor: _target_: nemo.collections.asr.modules.audio_modules.MaskBasedBeamformer # Mask-based multi-channel processing ref_channel: 0 # Reference channel for the output loss: _target_: nemo.collections.asr.losses.SDRLoss scale_invariant: true # Use scale-invariant SDR metrics: val: sdr: # output SDR _target_: torchmetrics.audio.SignalDistortionRatio test: sdr_ch0: # SDR on output channel 0 _target_: torchmetrics.audio.SignalDistortionRatio channel: 0 optim: name: adamw lr: 1e-3 # optimizer arguments betas: [0.9, 0.98] weight_decay: 0 trainer: devices: -1 # number of GPUs, -1 would use all available GPUs num_nodes: 1 max_epochs: -1 max_steps: -1 # computed at runtime if not set val_check_interval: 1.0 # Set to 0.25 to check 4 times per epoch, or an int for number of iterations accelerator: auto strategy: ddp accumulate_grad_batches: 1 gradient_clip_val: null precision: 32 # Should be set to 16 for O1 and O2 to enable the AMP. log_every_n_steps: 25 # Interval of logging. enable_progress_bar: true resume_from_checkpoint: null # The path to a checkpoint file to continue the training, restores the whole state including the epoch, step, LR schedulers, apex, etc. num_sanity_val_steps: 0 # number of steps to perform validation steps for sanity check the validation process before starting the training, setting to 0 disables it check_val_every_n_epoch: 1 # number of evaluations on validation every n epochs sync_batchnorm: true enable_checkpointing: False # Provided by exp_manager logger: false # Provided by exp_manager exp_manager: exp_dir: null name: ${name} create_tensorboard_logger: true create_checkpoint_callback: true checkpoint_callback_params: # in case of multiple validation sets, first one is used monitor: "val_loss" mode: "min" save_top_k: 5 always_save_nemo: true # saves the checkpoints as nemo files instead of PTL checkpoints # you need to set these two to true to continue the training resume_if_exists: false resume_ignore_no_checkpoint: false # You may use this section to create a W&B logger create_wandb_logger: false wandb_logger_kwargs: name: null project: null