# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import os from pathlib import Path from subprocess import PIPE, Popen from threading import Thread from nemo.collections.common import tokenizers from nemo.utils import logging def main(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="""Create token LM for input manifest and tokenizer.""", ) parser.add_argument( "--manifest", required=True, type=str, help="Comma separated list of manifest files", ) parser.add_argument( "--tokenizer_dir", required=True, type=str, help="The directory path to the tokenizer vocabulary + additional metadata", ) parser.add_argument( "--tokenizer_type", required=True, type=str, choices=["bpe", "wpe"], help="The type of the tokenizer. Currently supports `bpe` and `wpe`", ) parser.add_argument( "--lm_builder", default="chain-est-phone-lm", type=str, help=( "The path or name of an LM builder. Supported builders: chain-est-phone-lm " "and scripts/asr_language_modeling/ngram_lm/make_phone_lm.py" ), ) parser.add_argument( "--ngram_order", type=int, default=2, choices=[2, 3, 4, 5], help="Order of n-gram to use", ) parser.add_argument( "--output_file", required=True, type=str, help="The path to store the token LM", ) parser.add_argument( "--do_lowercase", action="store_true", help="Whether to apply lower case conversion on the text", ) args = parser.parse_args() is_chain_builder = Path(args.lm_builder).stem == "chain-est-phone-lm" """ TOKENIZER SETUP """ logging.info(f"Loading {args.tokenizer_type} tokenizer from '{args.tokenizer_dir}' ...") if args.tokenizer_type == "bpe": # This is a BPE Tokenizer model_path = os.path.join(args.tokenizer_dir, "tokenizer.model") # Update special tokens tokenizer = tokenizers.SentencePieceTokenizer(model_path=model_path) else: # This is a WPE Tokenizer vocab_path = os.path.join(args.tokenizer_dir, "vocab.txt") tokenizer = tokenizers.AutoTokenizer(pretrained_model_name="bert-base-cased", vocab_file=vocab_path) logging.info(f"Tokenizer {tokenizer.__class__.__name__} loaded with {tokenizer.vocab_size} tokens") """ DATA PROCESSING """ if "," in args.manifest: manifests = args.manifest.split(",") else: manifests = [args.manifest] offset = 1 # tokens in token LM cannot be 0 tok_text_list = [] num_lines = 0 for manifest in manifests: logging.info(f"Processing manifest : {manifest} ...") with open(manifest, "r") as in_reader: for line in in_reader: item = json.loads(line) text = item["text"] if args.do_lowercase: text = text.lower() tok_text = " ".join([str(i + offset) for i in tokenizer.text_to_ids(text)]) if is_chain_builder: tok_text = f"line_{num_lines} " + tok_text tok_text_list.append(tok_text) num_lines += 1 tok_texts = "\n".join(tok_text_list) del tok_text_list logging.info("Finished processing all manifests ! Number of sentences : {}".format(num_lines)) """ LM BUILDING """ logging.info(f"Calling {args.lm_builder} ...") if is_chain_builder: pipe_args = [ args.lm_builder, f"--ngram-order={args.ngram_order}", f"--no-prune-ngram-order={args.ngram_order}", "ark:-", "-", ] p1 = Popen(pipe_args, stdin=PIPE, stdout=PIPE, text=True) p2 = Popen(["fstprint"], stdin=p1.stdout, stdout=PIPE, text=True) p1.stdout.close() p1.stdout = None Thread(target=p1.communicate, args=[tok_texts]).start() out, err = p2.communicate() else: pipe_args = [ args.lm_builder, f"--ngram-order={args.ngram_order}", f"--no-backoff-ngram-order={args.ngram_order}", "--phone-disambig-symbol=-11", ] p1 = Popen(pipe_args, stdout=PIPE, stdin=PIPE, text=True) out, err = p1.communicate(tok_texts) logging.info(f"LM is built, writing to {args.output_file} ...") with open(args.output_file, "w", encoding="utf-8") as f: f.write(out) logging.info(f"Done writing to '{args.output_file}'.") if __name__ == "__main__": main()