File size: 7,561 Bytes
d5db947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import argparse
import torch
import requests
import dataclasses
import nncf
from PIL import Image
from io import BytesIO
from typing import List
from enum import auto, Enum
from convert_model import OVGotOcrModel
from transformers import AutoTokenizer, TextStreamer, StoppingCriteria
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode


class SeparatorStyle(Enum):
    """Different separator style."""
    SINGLE = auto()
    TWO = auto()
    MPT = auto()


@dataclasses.dataclass
class Conversation:
    """A class that keeps all conversation history."""
    system: str
    roles: List[str]
    messages: List[List[str]]
    offset: int
    sep_style: SeparatorStyle = SeparatorStyle.SINGLE
    sep: str = "<|im_end|>"
    sep2: str = None
    version: str = "Unknown"

    skip_next: bool = False

    def get_prompt(self):
        if self.sep_style == SeparatorStyle.SINGLE:
            ret = self.system + self.sep + '\n'
            for role, message in self.messages:
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + ": " + message + self.sep
                else:
                    ret += role + ":"
            return ret
        elif self.sep_style == SeparatorStyle.TWO:
            seps = [self.sep, self.sep2]
            ret = self.system + seps[0]
            for i, (role, message) in enumerate(self.messages):
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + ": " + message + seps[i % 2]
                else:
                    ret += role + ":"
            return ret
        if self.sep_style == SeparatorStyle.MPT:
            if self.system:
                ret = self.system + self.sep 
            else:
                ret = ''
            for role, message in self.messages:
                if message:
                    if type(message) is tuple:
                        message, _, _ = message
                    ret += role + message + self.sep
                else:
                    ret += role
            return ret
        else:
            raise ValueError(f"Invalid style: {self.sep_style}")


    def append_message(self, role, message):
        self.messages.append([role, message])

    def copy(self):
        return Conversation(
            system=self.system,
            roles=self.roles,
            messages=[[x, y] for x, y in self.messages],
            offset=self.offset,
            sep_style=self.sep_style,
            sep=self.sep,
            sep2=self.sep2)


class KeywordsStoppingCriteria(StoppingCriteria):
    def __init__(self, keywords, tokenizer, input_ids):
        self.keywords = keywords
        self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
        self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
        self.tokenizer = tokenizer
        self.start_len = None
        self.input_ids = input_ids

    def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        if self.start_len is None:
            self.start_len = self.input_ids.shape[1]
        else:
            for keyword_id in self.keyword_ids:
                if output_ids[0, -1] == keyword_id:
                    return True
            outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
            for keyword in self.keywords:
                if keyword in outputs:
                    return True
        return False
    

class GOTImageEvalProcessor:
    def __init__(self, image_size=384, mean=None, std=None):
        if mean is None:
            mean = (0.48145466, 0.4578275, 0.40821073)
        if std is None:
            std = (0.26862954, 0.26130258, 0.27577711)

        self.normalize = transforms.Normalize(mean, std)

        self.transform = transforms.Compose(
            [
                transforms.Resize(
                    (image_size, image_size), interpolation=InterpolationMode.BICUBIC
                ),
                transforms.ToTensor(),
                self.normalize,
            ]
        )
    def __call__(self, item):
        return self.transform(item)


def load_image(image_file):
    if image_file.startswith('http') or image_file.startswith('https'):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    return image


def eval_model(image_file, model, tokenizer):

    DEFAULT_IMAGE_TOKEN = "<image>"
    DEFAULT_IMAGE_PATCH_TOKEN = '<imgpad>'
    DEFAULT_IM_START_TOKEN = '<img>'
    DEFAULT_IM_END_TOKEN = '</img>'
    # Model

    # TODO vary old codes, NEED del
    image_processor = GOTImageEvalProcessor(image_size=1024)

    use_im_start_end = True

    image_token_len = 256

    image = load_image(image_file)

    qs = 'OCR: '

    if use_im_start_end:
        qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN*image_token_len + DEFAULT_IM_END_TOKEN + '\n' + qs
    else:
        qs = DEFAULT_IMAGE_TOKEN + '\n' + qs



    conv_mpt = Conversation(
        system="""<|im_start|>system
        You should follow the instructions carefully and explain your answers in detail.""",
        # system = None,
        roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
        version="mpt",
        messages=(),
        offset=0,
        sep_style=SeparatorStyle.MPT,
        sep="<|im_end|>",
    )

    conv = conv_mpt.copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()


    inputs = tokenizer([prompt])

    image_tensor = image_processor(image)

    input_ids = torch.as_tensor(inputs.input_ids).cpu()

    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    import time

    start = time.time()
    output_ids = model.generate(
        input_ids,
        images= [image_tensor.unsqueeze(0).cpu()],
        do_sample=False,
        num_beams = 1,
        no_repeat_ngram_size = 20,
        streamer=streamer,
        max_new_tokens=4096,
        stopping_criteria=[stopping_criteria],
        )
    end = time.time()
    print(f"\n Generate time {end - start}s")

    outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()

    if outputs.endswith(stop_str):
        outputs = outputs[:-len(stop_str)]
    outputs = outputs.strip()
    return output_ids.size(-1) / (end - start)
    return outputs


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--weight-dir", type=str, default="./")
    parser.add_argument("--image-file", type=str, required=True)
    args = parser.parse_args()
    model_dir = args.weight_dir

    compression_configuration = {
        "mode": nncf.CompressWeightsMode.INT4_ASYM,
        "group_size": 128,
        "ratio": 1.0,
    }
    model = OVGotOcrModel(model_dir, "CPU", compression_configuration=compression_configuration)
    tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
    with torch.no_grad():
        eval_model(args.image_file, model, tokenizer)