Commit
·
0df3d58
1
Parent(s):
b636d90
Update README.md
Browse files
README.md
CHANGED
@@ -55,7 +55,7 @@ labels = [row[1] for row in csvreader if len(row) > 1]
|
|
55 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
56 |
model.save_pretrained(MODEL)
|
57 |
|
58 |
-
text = "
|
59 |
text = preprocess(text)
|
60 |
encoded_input = tokenizer(text, return_tensors='pt')
|
61 |
output = model(**encoded_input)
|
@@ -66,7 +66,7 @@ scores = softmax(scores)
|
|
66 |
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
|
67 |
# model.save_pretrained(MODEL)
|
68 |
|
69 |
-
# text = "
|
70 |
# encoded_input = tokenizer(text, return_tensors='tf')
|
71 |
# output = model(encoded_input)
|
72 |
# scores = output[0][0].numpy()
|
@@ -87,4 +87,4 @@ Output:
|
|
87 |
1) positive 0.8466
|
88 |
2) neutral 0.1458
|
89 |
3) negative 0.0076
|
90 |
-
```
|
|
|
55 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
56 |
model.save_pretrained(MODEL)
|
57 |
|
58 |
+
text = "NIO"
|
59 |
text = preprocess(text)
|
60 |
encoded_input = tokenizer(text, return_tensors='pt')
|
61 |
output = model(**encoded_input)
|
|
|
66 |
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
|
67 |
# model.save_pretrained(MODEL)
|
68 |
|
69 |
+
# text = "NIO"
|
70 |
# encoded_input = tokenizer(text, return_tensors='tf')
|
71 |
# output = model(encoded_input)
|
72 |
# scores = output[0][0].numpy()
|
|
|
87 |
1) positive 0.8466
|
88 |
2) neutral 0.1458
|
89 |
3) negative 0.0076
|
90 |
+
```
|