cfli commited on
Commit
24d4888
·
verified ·
1 Parent(s): 21a54af

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-390/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-390/config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/share/chaofan/code/IR-Studio-up/online_test/finetune_result/medical_huatuo/retriever_round2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
checkpoint-390/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step390
checkpoint-390/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:855b4280f2d306c83c3ecfddf1ddbaae1d9032d4b20f51853faaa0d6a16c0f77
3
+ size 1135554344
checkpoint-390/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d450ca4e8a4d23fa4a961f741ce98adf42ebc214a8d43159f209a432e702f2bb
3
+ size 15920
checkpoint-390/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5aefb075d1611d454cce415a89a3e8758a14668167e62ee223c940f18466f91
3
+ size 15920
checkpoint-390/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dcbfd1b600592bb0373238657fc34e638f3e5ebb520ba7db76f02c937d90106
3
+ size 15920
checkpoint-390/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:296318f56f3d5adaa653c100d65f4bb29d9606f913baf047f89d721e68fd1569
3
+ size 15920
checkpoint-390/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc3c7b79f449b60a26fd9e32b3de05b3ee74517ca49e3df6c65fbbc771a17468
3
+ size 15920
checkpoint-390/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e53f54f8a626791d2d224a0053ec939ecf47b34d107fa7ae18122ca133a03eba
3
+ size 15920
checkpoint-390/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e38621271f3c4435c03fbc26b4480a7e4696df44d864f711718dd711df370c0
3
+ size 15920
checkpoint-390/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1dc421f4a40233aeeabdf5e226ccd9b8cc265fb6c63945e94ce3b532cb661f5a
3
+ size 15920
checkpoint-390/sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
checkpoint-390/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
checkpoint-390/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33cd99e33ce09bdd8a6136fddfe90a1c47f85bafedf7309d0eecc19012d43586
3
+ size 17082897
checkpoint-390/tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "stride": 0,
55
+ "tokenizer_class": "XLMRobertaTokenizer",
56
+ "truncation_side": "right",
57
+ "truncation_strategy": "longest_first",
58
+ "unk_token": "<unk>"
59
+ }
checkpoint-390/trainer_state.json ADDED
@@ -0,0 +1,2763 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 500,
6
+ "global_step": 390,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.002564102564102564,
13
+ "grad_norm": 1.828752040863037,
14
+ "learning_rate": 0.0,
15
+ "loss": 1.0674,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.005128205128205128,
20
+ "grad_norm": 2.0600810050964355,
21
+ "learning_rate": 1e-05,
22
+ "loss": 1.0127,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.007692307692307693,
27
+ "grad_norm": 1.7609747648239136,
28
+ "learning_rate": 1e-05,
29
+ "loss": 0.8945,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.010256410256410256,
34
+ "grad_norm": 2.0786192417144775,
35
+ "learning_rate": 9.974226804123713e-06,
36
+ "loss": 1.0947,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.01282051282051282,
41
+ "grad_norm": 1.8740049600601196,
42
+ "learning_rate": 9.948453608247423e-06,
43
+ "loss": 1.0859,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.015384615384615385,
48
+ "grad_norm": 1.8995977640151978,
49
+ "learning_rate": 9.922680412371136e-06,
50
+ "loss": 0.9326,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.017948717948717947,
55
+ "grad_norm": 1.807106375694275,
56
+ "learning_rate": 9.896907216494846e-06,
57
+ "loss": 0.9839,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.020512820512820513,
62
+ "grad_norm": 2.0719048976898193,
63
+ "learning_rate": 9.871134020618558e-06,
64
+ "loss": 1.1914,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.023076923076923078,
69
+ "grad_norm": 1.714697241783142,
70
+ "learning_rate": 9.84536082474227e-06,
71
+ "loss": 0.9263,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.02564102564102564,
76
+ "grad_norm": 1.7930278778076172,
77
+ "learning_rate": 9.819587628865979e-06,
78
+ "loss": 0.9546,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.028205128205128206,
83
+ "grad_norm": 1.8702346086502075,
84
+ "learning_rate": 9.793814432989691e-06,
85
+ "loss": 1.0645,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.03076923076923077,
90
+ "grad_norm": 1.7376536130905151,
91
+ "learning_rate": 9.768041237113403e-06,
92
+ "loss": 1.0166,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.03333333333333333,
97
+ "grad_norm": 1.804457426071167,
98
+ "learning_rate": 9.742268041237114e-06,
99
+ "loss": 0.8545,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.035897435897435895,
104
+ "grad_norm": 1.8418951034545898,
105
+ "learning_rate": 9.716494845360826e-06,
106
+ "loss": 1.1855,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.038461538461538464,
111
+ "grad_norm": 3.295741558074951,
112
+ "learning_rate": 9.690721649484536e-06,
113
+ "loss": 1.1631,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.041025641025641026,
118
+ "grad_norm": 2.6767563819885254,
119
+ "learning_rate": 9.664948453608248e-06,
120
+ "loss": 1.0205,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.04358974358974359,
125
+ "grad_norm": 2.088998556137085,
126
+ "learning_rate": 9.63917525773196e-06,
127
+ "loss": 0.9512,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.046153846153846156,
132
+ "grad_norm": 3.8526885509490967,
133
+ "learning_rate": 9.613402061855671e-06,
134
+ "loss": 1.2227,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.04871794871794872,
139
+ "grad_norm": 2.5801403522491455,
140
+ "learning_rate": 9.587628865979383e-06,
141
+ "loss": 0.9424,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.05128205128205128,
146
+ "grad_norm": 2.2087137699127197,
147
+ "learning_rate": 9.561855670103093e-06,
148
+ "loss": 1.3262,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.05384615384615385,
153
+ "grad_norm": 1.9106372594833374,
154
+ "learning_rate": 9.536082474226806e-06,
155
+ "loss": 0.9004,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.05641025641025641,
160
+ "grad_norm": 1.7588039636611938,
161
+ "learning_rate": 9.510309278350516e-06,
162
+ "loss": 0.9482,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.05897435897435897,
167
+ "grad_norm": 2.0292000770568848,
168
+ "learning_rate": 9.484536082474226e-06,
169
+ "loss": 1.0371,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.06153846153846154,
174
+ "grad_norm": 1.8534419536590576,
175
+ "learning_rate": 9.458762886597939e-06,
176
+ "loss": 1.0303,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.0641025641025641,
181
+ "grad_norm": 2.4608726501464844,
182
+ "learning_rate": 9.43298969072165e-06,
183
+ "loss": 1.4395,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.06666666666666667,
188
+ "grad_norm": 2.119417905807495,
189
+ "learning_rate": 9.407216494845361e-06,
190
+ "loss": 1.1143,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.06923076923076923,
195
+ "grad_norm": 2.145531177520752,
196
+ "learning_rate": 9.381443298969073e-06,
197
+ "loss": 0.9443,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.07179487179487179,
202
+ "grad_norm": 4.710203170776367,
203
+ "learning_rate": 9.355670103092784e-06,
204
+ "loss": 1.3311,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.07435897435897436,
209
+ "grad_norm": 3.2553186416625977,
210
+ "learning_rate": 9.329896907216496e-06,
211
+ "loss": 1.123,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.07692307692307693,
216
+ "grad_norm": 2.38273024559021,
217
+ "learning_rate": 9.304123711340208e-06,
218
+ "loss": 1.124,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.07948717948717948,
223
+ "grad_norm": 3.6473400592803955,
224
+ "learning_rate": 9.278350515463918e-06,
225
+ "loss": 1.2568,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.08205128205128205,
230
+ "grad_norm": 2.2762739658355713,
231
+ "learning_rate": 9.25257731958763e-06,
232
+ "loss": 1.0898,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.08461538461538462,
237
+ "grad_norm": 1.870347499847412,
238
+ "learning_rate": 9.226804123711341e-06,
239
+ "loss": 0.8887,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.08717948717948718,
244
+ "grad_norm": 3.9631059169769287,
245
+ "learning_rate": 9.201030927835051e-06,
246
+ "loss": 0.937,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.08974358974358974,
251
+ "grad_norm": 2.2279770374298096,
252
+ "learning_rate": 9.175257731958764e-06,
253
+ "loss": 0.9785,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.09230769230769231,
258
+ "grad_norm": 2.2554802894592285,
259
+ "learning_rate": 9.149484536082474e-06,
260
+ "loss": 1.0762,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.09487179487179487,
265
+ "grad_norm": 2.188344955444336,
266
+ "learning_rate": 9.123711340206186e-06,
267
+ "loss": 1.1318,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.09743589743589744,
272
+ "grad_norm": 2.1649510860443115,
273
+ "learning_rate": 9.097938144329898e-06,
274
+ "loss": 0.7827,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.1,
279
+ "grad_norm": 2.4596219062805176,
280
+ "learning_rate": 9.072164948453609e-06,
281
+ "loss": 0.8247,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.10256410256410256,
286
+ "grad_norm": 2.487870931625366,
287
+ "learning_rate": 9.04639175257732e-06,
288
+ "loss": 1.0635,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.10512820512820513,
293
+ "grad_norm": 1.9071369171142578,
294
+ "learning_rate": 9.020618556701031e-06,
295
+ "loss": 0.9946,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.1076923076923077,
300
+ "grad_norm": 2.219597101211548,
301
+ "learning_rate": 8.994845360824743e-06,
302
+ "loss": 1.1309,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.11025641025641025,
307
+ "grad_norm": 2.2724695205688477,
308
+ "learning_rate": 8.969072164948455e-06,
309
+ "loss": 1.2637,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.11282051282051282,
314
+ "grad_norm": 2.331315755844116,
315
+ "learning_rate": 8.943298969072166e-06,
316
+ "loss": 1.1611,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.11538461538461539,
321
+ "grad_norm": 2.036611318588257,
322
+ "learning_rate": 8.917525773195878e-06,
323
+ "loss": 0.9233,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.11794871794871795,
328
+ "grad_norm": 1.9779893159866333,
329
+ "learning_rate": 8.891752577319588e-06,
330
+ "loss": 0.8071,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.12051282051282051,
335
+ "grad_norm": 2.511869192123413,
336
+ "learning_rate": 8.865979381443299e-06,
337
+ "loss": 0.9165,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.12307692307692308,
342
+ "grad_norm": 1.9824575185775757,
343
+ "learning_rate": 8.840206185567011e-06,
344
+ "loss": 0.9712,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.12564102564102564,
349
+ "grad_norm": 2.224874973297119,
350
+ "learning_rate": 8.814432989690721e-06,
351
+ "loss": 0.8857,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.1282051282051282,
356
+ "grad_norm": 2.290484666824341,
357
+ "learning_rate": 8.788659793814434e-06,
358
+ "loss": 1.0908,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.13076923076923078,
363
+ "grad_norm": 2.009584903717041,
364
+ "learning_rate": 8.762886597938146e-06,
365
+ "loss": 0.833,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.13333333333333333,
370
+ "grad_norm": 4.70264196395874,
371
+ "learning_rate": 8.737113402061856e-06,
372
+ "loss": 0.998,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.1358974358974359,
377
+ "grad_norm": 3.110806465148926,
378
+ "learning_rate": 8.711340206185568e-06,
379
+ "loss": 0.9189,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.13846153846153847,
384
+ "grad_norm": 1.902529239654541,
385
+ "learning_rate": 8.685567010309279e-06,
386
+ "loss": 1.0293,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.14102564102564102,
391
+ "grad_norm": 2.1648287773132324,
392
+ "learning_rate": 8.65979381443299e-06,
393
+ "loss": 1.0488,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.14358974358974358,
398
+ "grad_norm": 1.7489367723464966,
399
+ "learning_rate": 8.634020618556703e-06,
400
+ "loss": 0.8091,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.14615384615384616,
405
+ "grad_norm": 1.9431246519088745,
406
+ "learning_rate": 8.608247422680413e-06,
407
+ "loss": 1.0049,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.14871794871794872,
412
+ "grad_norm": 2.2493724822998047,
413
+ "learning_rate": 8.582474226804124e-06,
414
+ "loss": 0.9321,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.15128205128205127,
419
+ "grad_norm": 2.1866893768310547,
420
+ "learning_rate": 8.556701030927836e-06,
421
+ "loss": 1.2656,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.15384615384615385,
426
+ "grad_norm": 2.024313449859619,
427
+ "learning_rate": 8.530927835051546e-06,
428
+ "loss": 1.0801,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.1564102564102564,
433
+ "grad_norm": 1.77311110496521,
434
+ "learning_rate": 8.505154639175259e-06,
435
+ "loss": 0.9946,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.15897435897435896,
440
+ "grad_norm": 1.6627540588378906,
441
+ "learning_rate": 8.479381443298969e-06,
442
+ "loss": 0.9702,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.16153846153846155,
447
+ "grad_norm": 1.9997308254241943,
448
+ "learning_rate": 8.453608247422681e-06,
449
+ "loss": 0.9487,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.1641025641025641,
454
+ "grad_norm": 1.6049851179122925,
455
+ "learning_rate": 8.427835051546393e-06,
456
+ "loss": 0.9512,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.16666666666666666,
461
+ "grad_norm": 1.8791325092315674,
462
+ "learning_rate": 8.402061855670104e-06,
463
+ "loss": 0.9355,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.16923076923076924,
468
+ "grad_norm": 2.173393964767456,
469
+ "learning_rate": 8.376288659793816e-06,
470
+ "loss": 1.1992,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.1717948717948718,
475
+ "grad_norm": 2.0367043018341064,
476
+ "learning_rate": 8.350515463917526e-06,
477
+ "loss": 1.1426,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.17435897435897435,
482
+ "grad_norm": 1.7792794704437256,
483
+ "learning_rate": 8.324742268041238e-06,
484
+ "loss": 0.9097,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.17692307692307693,
489
+ "grad_norm": 1.9103853702545166,
490
+ "learning_rate": 8.29896907216495e-06,
491
+ "loss": 1.0225,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.1794871794871795,
496
+ "grad_norm": 2.0614025592803955,
497
+ "learning_rate": 8.27319587628866e-06,
498
+ "loss": 1.2012,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.18205128205128204,
503
+ "grad_norm": 1.5830662250518799,
504
+ "learning_rate": 8.247422680412371e-06,
505
+ "loss": 0.7656,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.18461538461538463,
510
+ "grad_norm": 1.8411104679107666,
511
+ "learning_rate": 8.221649484536083e-06,
512
+ "loss": 1.1162,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.18717948717948718,
517
+ "grad_norm": 1.954744815826416,
518
+ "learning_rate": 8.195876288659794e-06,
519
+ "loss": 1.2031,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.18974358974358974,
524
+ "grad_norm": 2.1274709701538086,
525
+ "learning_rate": 8.170103092783506e-06,
526
+ "loss": 1.1641,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.19230769230769232,
531
+ "grad_norm": 1.8388986587524414,
532
+ "learning_rate": 8.144329896907216e-06,
533
+ "loss": 0.9517,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.19487179487179487,
538
+ "grad_norm": 2.0911478996276855,
539
+ "learning_rate": 8.118556701030929e-06,
540
+ "loss": 1.0801,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.19743589743589743,
545
+ "grad_norm": 1.9565143585205078,
546
+ "learning_rate": 8.09278350515464e-06,
547
+ "loss": 0.9478,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.2,
552
+ "grad_norm": 1.8666242361068726,
553
+ "learning_rate": 8.067010309278351e-06,
554
+ "loss": 1.3125,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.20256410256410257,
559
+ "grad_norm": 1.9826719760894775,
560
+ "learning_rate": 8.041237113402063e-06,
561
+ "loss": 0.9492,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.20512820512820512,
566
+ "grad_norm": 2.062222719192505,
567
+ "learning_rate": 8.015463917525774e-06,
568
+ "loss": 1.0195,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.2076923076923077,
573
+ "grad_norm": 2.2730824947357178,
574
+ "learning_rate": 7.989690721649486e-06,
575
+ "loss": 0.9248,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.21025641025641026,
580
+ "grad_norm": 3.432387113571167,
581
+ "learning_rate": 7.963917525773196e-06,
582
+ "loss": 0.9678,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.2128205128205128,
587
+ "grad_norm": 2.1514482498168945,
588
+ "learning_rate": 7.938144329896907e-06,
589
+ "loss": 0.7881,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.2153846153846154,
594
+ "grad_norm": 1.6954137086868286,
595
+ "learning_rate": 7.912371134020619e-06,
596
+ "loss": 0.8833,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.21794871794871795,
601
+ "grad_norm": 1.9222341775894165,
602
+ "learning_rate": 7.886597938144331e-06,
603
+ "loss": 0.9917,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.2205128205128205,
608
+ "grad_norm": 1.9066567420959473,
609
+ "learning_rate": 7.860824742268041e-06,
610
+ "loss": 0.9507,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.2230769230769231,
615
+ "grad_norm": 1.9370355606079102,
616
+ "learning_rate": 7.835051546391754e-06,
617
+ "loss": 0.9814,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.22564102564102564,
622
+ "grad_norm": 1.8217931985855103,
623
+ "learning_rate": 7.809278350515464e-06,
624
+ "loss": 1.0186,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.2282051282051282,
629
+ "grad_norm": 1.6907788515090942,
630
+ "learning_rate": 7.783505154639176e-06,
631
+ "loss": 0.9624,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.23076923076923078,
636
+ "grad_norm": 1.6538673639297485,
637
+ "learning_rate": 7.757731958762888e-06,
638
+ "loss": 0.8237,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.23333333333333334,
643
+ "grad_norm": 1.9128988981246948,
644
+ "learning_rate": 7.731958762886599e-06,
645
+ "loss": 0.9175,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.2358974358974359,
650
+ "grad_norm": 3.1747217178344727,
651
+ "learning_rate": 7.70618556701031e-06,
652
+ "loss": 0.9775,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.23846153846153847,
657
+ "grad_norm": 1.6946772336959839,
658
+ "learning_rate": 7.680412371134021e-06,
659
+ "loss": 0.8823,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.24102564102564103,
664
+ "grad_norm": 2.1718826293945312,
665
+ "learning_rate": 7.654639175257732e-06,
666
+ "loss": 1.1543,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.24358974358974358,
671
+ "grad_norm": 2.0842125415802,
672
+ "learning_rate": 7.628865979381444e-06,
673
+ "loss": 0.9058,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.24615384615384617,
678
+ "grad_norm": 1.8005638122558594,
679
+ "learning_rate": 7.603092783505155e-06,
680
+ "loss": 0.9146,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.24871794871794872,
685
+ "grad_norm": 1.6228526830673218,
686
+ "learning_rate": 7.577319587628866e-06,
687
+ "loss": 0.7095,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.2512820512820513,
692
+ "grad_norm": 2.022739887237549,
693
+ "learning_rate": 7.551546391752578e-06,
694
+ "loss": 0.9229,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.25384615384615383,
699
+ "grad_norm": 1.7935630083084106,
700
+ "learning_rate": 7.525773195876289e-06,
701
+ "loss": 0.7896,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.2564102564102564,
706
+ "grad_norm": 1.747321367263794,
707
+ "learning_rate": 7.500000000000001e-06,
708
+ "loss": 0.9551,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.258974358974359,
713
+ "grad_norm": 1.8076218366622925,
714
+ "learning_rate": 7.474226804123712e-06,
715
+ "loss": 0.8394,
716
+ "step": 101
717
+ },
718
+ {
719
+ "epoch": 0.26153846153846155,
720
+ "grad_norm": 1.730443000793457,
721
+ "learning_rate": 7.448453608247424e-06,
722
+ "loss": 0.9062,
723
+ "step": 102
724
+ },
725
+ {
726
+ "epoch": 0.2641025641025641,
727
+ "grad_norm": 2.290266275405884,
728
+ "learning_rate": 7.422680412371135e-06,
729
+ "loss": 1.248,
730
+ "step": 103
731
+ },
732
+ {
733
+ "epoch": 0.26666666666666666,
734
+ "grad_norm": 1.772620677947998,
735
+ "learning_rate": 7.396907216494846e-06,
736
+ "loss": 0.8296,
737
+ "step": 104
738
+ },
739
+ {
740
+ "epoch": 0.2692307692307692,
741
+ "grad_norm": 1.7270923852920532,
742
+ "learning_rate": 7.3711340206185574e-06,
743
+ "loss": 0.8735,
744
+ "step": 105
745
+ },
746
+ {
747
+ "epoch": 0.2717948717948718,
748
+ "grad_norm": 3.0547115802764893,
749
+ "learning_rate": 7.3453608247422696e-06,
750
+ "loss": 0.9385,
751
+ "step": 106
752
+ },
753
+ {
754
+ "epoch": 0.2743589743589744,
755
+ "grad_norm": 2.1224873065948486,
756
+ "learning_rate": 7.319587628865979e-06,
757
+ "loss": 1.0918,
758
+ "step": 107
759
+ },
760
+ {
761
+ "epoch": 0.27692307692307694,
762
+ "grad_norm": 2.175182819366455,
763
+ "learning_rate": 7.293814432989691e-06,
764
+ "loss": 0.9707,
765
+ "step": 108
766
+ },
767
+ {
768
+ "epoch": 0.2794871794871795,
769
+ "grad_norm": 1.8396246433258057,
770
+ "learning_rate": 7.2680412371134026e-06,
771
+ "loss": 0.9609,
772
+ "step": 109
773
+ },
774
+ {
775
+ "epoch": 0.28205128205128205,
776
+ "grad_norm": 1.8551801443099976,
777
+ "learning_rate": 7.242268041237114e-06,
778
+ "loss": 0.8916,
779
+ "step": 110
780
+ },
781
+ {
782
+ "epoch": 0.2846153846153846,
783
+ "grad_norm": 1.960680603981018,
784
+ "learning_rate": 7.216494845360825e-06,
785
+ "loss": 1.0352,
786
+ "step": 111
787
+ },
788
+ {
789
+ "epoch": 0.28717948717948716,
790
+ "grad_norm": 1.8434001207351685,
791
+ "learning_rate": 7.190721649484536e-06,
792
+ "loss": 1.0576,
793
+ "step": 112
794
+ },
795
+ {
796
+ "epoch": 0.28974358974358977,
797
+ "grad_norm": 2.5577752590179443,
798
+ "learning_rate": 7.164948453608248e-06,
799
+ "loss": 1.0762,
800
+ "step": 113
801
+ },
802
+ {
803
+ "epoch": 0.2923076923076923,
804
+ "grad_norm": 1.8725932836532593,
805
+ "learning_rate": 7.13917525773196e-06,
806
+ "loss": 0.79,
807
+ "step": 114
808
+ },
809
+ {
810
+ "epoch": 0.2948717948717949,
811
+ "grad_norm": 2.0246224403381348,
812
+ "learning_rate": 7.113402061855671e-06,
813
+ "loss": 0.9058,
814
+ "step": 115
815
+ },
816
+ {
817
+ "epoch": 0.29743589743589743,
818
+ "grad_norm": 1.8787579536437988,
819
+ "learning_rate": 7.087628865979382e-06,
820
+ "loss": 0.8569,
821
+ "step": 116
822
+ },
823
+ {
824
+ "epoch": 0.3,
825
+ "grad_norm": 1.6573154926300049,
826
+ "learning_rate": 7.061855670103094e-06,
827
+ "loss": 0.8091,
828
+ "step": 117
829
+ },
830
+ {
831
+ "epoch": 0.30256410256410254,
832
+ "grad_norm": 1.7937979698181152,
833
+ "learning_rate": 7.036082474226805e-06,
834
+ "loss": 0.978,
835
+ "step": 118
836
+ },
837
+ {
838
+ "epoch": 0.30512820512820515,
839
+ "grad_norm": 1.9054224491119385,
840
+ "learning_rate": 7.010309278350515e-06,
841
+ "loss": 1.0635,
842
+ "step": 119
843
+ },
844
+ {
845
+ "epoch": 0.3076923076923077,
846
+ "grad_norm": 1.6725414991378784,
847
+ "learning_rate": 6.984536082474227e-06,
848
+ "loss": 1.0312,
849
+ "step": 120
850
+ },
851
+ {
852
+ "epoch": 0.31025641025641026,
853
+ "grad_norm": 1.8967286348342896,
854
+ "learning_rate": 6.958762886597939e-06,
855
+ "loss": 0.9746,
856
+ "step": 121
857
+ },
858
+ {
859
+ "epoch": 0.3128205128205128,
860
+ "grad_norm": 2.158597230911255,
861
+ "learning_rate": 6.93298969072165e-06,
862
+ "loss": 1.1309,
863
+ "step": 122
864
+ },
865
+ {
866
+ "epoch": 0.3153846153846154,
867
+ "grad_norm": 2.2662479877471924,
868
+ "learning_rate": 6.907216494845361e-06,
869
+ "loss": 1.0674,
870
+ "step": 123
871
+ },
872
+ {
873
+ "epoch": 0.31794871794871793,
874
+ "grad_norm": 1.9628630876541138,
875
+ "learning_rate": 6.881443298969073e-06,
876
+ "loss": 0.9644,
877
+ "step": 124
878
+ },
879
+ {
880
+ "epoch": 0.32051282051282054,
881
+ "grad_norm": 1.7974278926849365,
882
+ "learning_rate": 6.855670103092784e-06,
883
+ "loss": 0.8877,
884
+ "step": 125
885
+ },
886
+ {
887
+ "epoch": 0.3230769230769231,
888
+ "grad_norm": 1.7548365592956543,
889
+ "learning_rate": 6.829896907216495e-06,
890
+ "loss": 0.9204,
891
+ "step": 126
892
+ },
893
+ {
894
+ "epoch": 0.32564102564102565,
895
+ "grad_norm": 1.9516572952270508,
896
+ "learning_rate": 6.804123711340207e-06,
897
+ "loss": 1.1602,
898
+ "step": 127
899
+ },
900
+ {
901
+ "epoch": 0.3282051282051282,
902
+ "grad_norm": 2.1989433765411377,
903
+ "learning_rate": 6.778350515463919e-06,
904
+ "loss": 1.1133,
905
+ "step": 128
906
+ },
907
+ {
908
+ "epoch": 0.33076923076923076,
909
+ "grad_norm": 1.800710916519165,
910
+ "learning_rate": 6.75257731958763e-06,
911
+ "loss": 0.791,
912
+ "step": 129
913
+ },
914
+ {
915
+ "epoch": 0.3333333333333333,
916
+ "grad_norm": 3.385741710662842,
917
+ "learning_rate": 6.726804123711341e-06,
918
+ "loss": 1.1758,
919
+ "step": 130
920
+ },
921
+ {
922
+ "epoch": 0.33589743589743587,
923
+ "grad_norm": 2.0922465324401855,
924
+ "learning_rate": 6.701030927835052e-06,
925
+ "loss": 0.9214,
926
+ "step": 131
927
+ },
928
+ {
929
+ "epoch": 0.3384615384615385,
930
+ "grad_norm": 1.573805332183838,
931
+ "learning_rate": 6.675257731958763e-06,
932
+ "loss": 0.7715,
933
+ "step": 132
934
+ },
935
+ {
936
+ "epoch": 0.34102564102564104,
937
+ "grad_norm": 1.7901231050491333,
938
+ "learning_rate": 6.649484536082474e-06,
939
+ "loss": 0.9443,
940
+ "step": 133
941
+ },
942
+ {
943
+ "epoch": 0.3435897435897436,
944
+ "grad_norm": 1.6376028060913086,
945
+ "learning_rate": 6.623711340206186e-06,
946
+ "loss": 0.9854,
947
+ "step": 134
948
+ },
949
+ {
950
+ "epoch": 0.34615384615384615,
951
+ "grad_norm": 2.0153403282165527,
952
+ "learning_rate": 6.597938144329898e-06,
953
+ "loss": 1.2373,
954
+ "step": 135
955
+ },
956
+ {
957
+ "epoch": 0.3487179487179487,
958
+ "grad_norm": 1.819011926651001,
959
+ "learning_rate": 6.572164948453609e-06,
960
+ "loss": 0.9048,
961
+ "step": 136
962
+ },
963
+ {
964
+ "epoch": 0.35128205128205126,
965
+ "grad_norm": 1.623148798942566,
966
+ "learning_rate": 6.54639175257732e-06,
967
+ "loss": 0.8262,
968
+ "step": 137
969
+ },
970
+ {
971
+ "epoch": 0.35384615384615387,
972
+ "grad_norm": 2.2499585151672363,
973
+ "learning_rate": 6.520618556701031e-06,
974
+ "loss": 1.1152,
975
+ "step": 138
976
+ },
977
+ {
978
+ "epoch": 0.3564102564102564,
979
+ "grad_norm": 1.9235867261886597,
980
+ "learning_rate": 6.494845360824743e-06,
981
+ "loss": 0.9067,
982
+ "step": 139
983
+ },
984
+ {
985
+ "epoch": 0.358974358974359,
986
+ "grad_norm": 1.9163473844528198,
987
+ "learning_rate": 6.469072164948455e-06,
988
+ "loss": 1.0469,
989
+ "step": 140
990
+ },
991
+ {
992
+ "epoch": 0.36153846153846153,
993
+ "grad_norm": 2.092963457107544,
994
+ "learning_rate": 6.443298969072166e-06,
995
+ "loss": 1.0352,
996
+ "step": 141
997
+ },
998
+ {
999
+ "epoch": 0.3641025641025641,
1000
+ "grad_norm": 9.061576843261719,
1001
+ "learning_rate": 6.417525773195877e-06,
1002
+ "loss": 0.833,
1003
+ "step": 142
1004
+ },
1005
+ {
1006
+ "epoch": 0.36666666666666664,
1007
+ "grad_norm": 2.0472512245178223,
1008
+ "learning_rate": 6.391752577319588e-06,
1009
+ "loss": 1.043,
1010
+ "step": 143
1011
+ },
1012
+ {
1013
+ "epoch": 0.36923076923076925,
1014
+ "grad_norm": 1.9477477073669434,
1015
+ "learning_rate": 6.365979381443299e-06,
1016
+ "loss": 0.9644,
1017
+ "step": 144
1018
+ },
1019
+ {
1020
+ "epoch": 0.3717948717948718,
1021
+ "grad_norm": 1.9295361042022705,
1022
+ "learning_rate": 6.34020618556701e-06,
1023
+ "loss": 0.9746,
1024
+ "step": 145
1025
+ },
1026
+ {
1027
+ "epoch": 0.37435897435897436,
1028
+ "grad_norm": 1.9540655612945557,
1029
+ "learning_rate": 6.314432989690722e-06,
1030
+ "loss": 0.9375,
1031
+ "step": 146
1032
+ },
1033
+ {
1034
+ "epoch": 0.3769230769230769,
1035
+ "grad_norm": 1.9495689868927002,
1036
+ "learning_rate": 6.288659793814433e-06,
1037
+ "loss": 1.123,
1038
+ "step": 147
1039
+ },
1040
+ {
1041
+ "epoch": 0.37948717948717947,
1042
+ "grad_norm": 1.8979523181915283,
1043
+ "learning_rate": 6.262886597938145e-06,
1044
+ "loss": 1.0762,
1045
+ "step": 148
1046
+ },
1047
+ {
1048
+ "epoch": 0.382051282051282,
1049
+ "grad_norm": 2.086167573928833,
1050
+ "learning_rate": 6.237113402061856e-06,
1051
+ "loss": 0.8975,
1052
+ "step": 149
1053
+ },
1054
+ {
1055
+ "epoch": 0.38461538461538464,
1056
+ "grad_norm": 1.9562528133392334,
1057
+ "learning_rate": 6.211340206185568e-06,
1058
+ "loss": 0.9429,
1059
+ "step": 150
1060
+ },
1061
+ {
1062
+ "epoch": 0.3871794871794872,
1063
+ "grad_norm": 2.3442628383636475,
1064
+ "learning_rate": 6.185567010309279e-06,
1065
+ "loss": 0.9844,
1066
+ "step": 151
1067
+ },
1068
+ {
1069
+ "epoch": 0.38974358974358975,
1070
+ "grad_norm": 1.8352185487747192,
1071
+ "learning_rate": 6.15979381443299e-06,
1072
+ "loss": 1.1045,
1073
+ "step": 152
1074
+ },
1075
+ {
1076
+ "epoch": 0.3923076923076923,
1077
+ "grad_norm": 3.1961944103240967,
1078
+ "learning_rate": 6.134020618556702e-06,
1079
+ "loss": 1.0596,
1080
+ "step": 153
1081
+ },
1082
+ {
1083
+ "epoch": 0.39487179487179486,
1084
+ "grad_norm": 1.8429200649261475,
1085
+ "learning_rate": 6.108247422680414e-06,
1086
+ "loss": 0.9365,
1087
+ "step": 154
1088
+ },
1089
+ {
1090
+ "epoch": 0.3974358974358974,
1091
+ "grad_norm": 1.929801106452942,
1092
+ "learning_rate": 6.082474226804124e-06,
1093
+ "loss": 0.9883,
1094
+ "step": 155
1095
+ },
1096
+ {
1097
+ "epoch": 0.4,
1098
+ "grad_norm": 1.670444369316101,
1099
+ "learning_rate": 6.056701030927835e-06,
1100
+ "loss": 0.7524,
1101
+ "step": 156
1102
+ },
1103
+ {
1104
+ "epoch": 0.4025641025641026,
1105
+ "grad_norm": 2.022891044616699,
1106
+ "learning_rate": 6.030927835051547e-06,
1107
+ "loss": 1.2197,
1108
+ "step": 157
1109
+ },
1110
+ {
1111
+ "epoch": 0.40512820512820513,
1112
+ "grad_norm": 1.7056248188018799,
1113
+ "learning_rate": 6.005154639175258e-06,
1114
+ "loss": 0.9121,
1115
+ "step": 158
1116
+ },
1117
+ {
1118
+ "epoch": 0.4076923076923077,
1119
+ "grad_norm": 2.0686631202697754,
1120
+ "learning_rate": 5.979381443298969e-06,
1121
+ "loss": 1.1865,
1122
+ "step": 159
1123
+ },
1124
+ {
1125
+ "epoch": 0.41025641025641024,
1126
+ "grad_norm": 1.8868600130081177,
1127
+ "learning_rate": 5.9536082474226805e-06,
1128
+ "loss": 0.9658,
1129
+ "step": 160
1130
+ },
1131
+ {
1132
+ "epoch": 0.4128205128205128,
1133
+ "grad_norm": 2.3580541610717773,
1134
+ "learning_rate": 5.927835051546393e-06,
1135
+ "loss": 0.9297,
1136
+ "step": 161
1137
+ },
1138
+ {
1139
+ "epoch": 0.4153846153846154,
1140
+ "grad_norm": 2.071708917617798,
1141
+ "learning_rate": 5.902061855670104e-06,
1142
+ "loss": 1.0693,
1143
+ "step": 162
1144
+ },
1145
+ {
1146
+ "epoch": 0.41794871794871796,
1147
+ "grad_norm": 1.8569782972335815,
1148
+ "learning_rate": 5.876288659793815e-06,
1149
+ "loss": 0.9438,
1150
+ "step": 163
1151
+ },
1152
+ {
1153
+ "epoch": 0.4205128205128205,
1154
+ "grad_norm": 1.7496881484985352,
1155
+ "learning_rate": 5.8505154639175264e-06,
1156
+ "loss": 0.8574,
1157
+ "step": 164
1158
+ },
1159
+ {
1160
+ "epoch": 0.4230769230769231,
1161
+ "grad_norm": 1.825770378112793,
1162
+ "learning_rate": 5.824742268041238e-06,
1163
+ "loss": 0.9678,
1164
+ "step": 165
1165
+ },
1166
+ {
1167
+ "epoch": 0.4256410256410256,
1168
+ "grad_norm": 2.156632423400879,
1169
+ "learning_rate": 5.79896907216495e-06,
1170
+ "loss": 1.2031,
1171
+ "step": 166
1172
+ },
1173
+ {
1174
+ "epoch": 0.4282051282051282,
1175
+ "grad_norm": 1.6969801187515259,
1176
+ "learning_rate": 5.7731958762886594e-06,
1177
+ "loss": 0.8359,
1178
+ "step": 167
1179
+ },
1180
+ {
1181
+ "epoch": 0.4307692307692308,
1182
+ "grad_norm": 2.4445745944976807,
1183
+ "learning_rate": 5.7474226804123716e-06,
1184
+ "loss": 1.0293,
1185
+ "step": 168
1186
+ },
1187
+ {
1188
+ "epoch": 0.43333333333333335,
1189
+ "grad_norm": 1.9905025959014893,
1190
+ "learning_rate": 5.721649484536083e-06,
1191
+ "loss": 1.0791,
1192
+ "step": 169
1193
+ },
1194
+ {
1195
+ "epoch": 0.4358974358974359,
1196
+ "grad_norm": 1.9443804025650024,
1197
+ "learning_rate": 5.695876288659794e-06,
1198
+ "loss": 0.9702,
1199
+ "step": 170
1200
+ },
1201
+ {
1202
+ "epoch": 0.43846153846153846,
1203
+ "grad_norm": 2.2694649696350098,
1204
+ "learning_rate": 5.670103092783505e-06,
1205
+ "loss": 1.1914,
1206
+ "step": 171
1207
+ },
1208
+ {
1209
+ "epoch": 0.441025641025641,
1210
+ "grad_norm": 2.1340649127960205,
1211
+ "learning_rate": 5.644329896907217e-06,
1212
+ "loss": 1.0371,
1213
+ "step": 172
1214
+ },
1215
+ {
1216
+ "epoch": 0.44358974358974357,
1217
+ "grad_norm": 1.9536010026931763,
1218
+ "learning_rate": 5.618556701030928e-06,
1219
+ "loss": 0.9888,
1220
+ "step": 173
1221
+ },
1222
+ {
1223
+ "epoch": 0.4461538461538462,
1224
+ "grad_norm": 1.837241530418396,
1225
+ "learning_rate": 5.59278350515464e-06,
1226
+ "loss": 0.9033,
1227
+ "step": 174
1228
+ },
1229
+ {
1230
+ "epoch": 0.44871794871794873,
1231
+ "grad_norm": 1.8256818056106567,
1232
+ "learning_rate": 5.567010309278351e-06,
1233
+ "loss": 1.0117,
1234
+ "step": 175
1235
+ },
1236
+ {
1237
+ "epoch": 0.4512820512820513,
1238
+ "grad_norm": 2.1817359924316406,
1239
+ "learning_rate": 5.541237113402063e-06,
1240
+ "loss": 0.8506,
1241
+ "step": 176
1242
+ },
1243
+ {
1244
+ "epoch": 0.45384615384615384,
1245
+ "grad_norm": 1.7470033168792725,
1246
+ "learning_rate": 5.515463917525774e-06,
1247
+ "loss": 0.9473,
1248
+ "step": 177
1249
+ },
1250
+ {
1251
+ "epoch": 0.4564102564102564,
1252
+ "grad_norm": 1.8381420373916626,
1253
+ "learning_rate": 5.489690721649485e-06,
1254
+ "loss": 0.8828,
1255
+ "step": 178
1256
+ },
1257
+ {
1258
+ "epoch": 0.45897435897435895,
1259
+ "grad_norm": 1.9407833814620972,
1260
+ "learning_rate": 5.463917525773196e-06,
1261
+ "loss": 1.3193,
1262
+ "step": 179
1263
+ },
1264
+ {
1265
+ "epoch": 0.46153846153846156,
1266
+ "grad_norm": 1.9037673473358154,
1267
+ "learning_rate": 5.438144329896907e-06,
1268
+ "loss": 0.916,
1269
+ "step": 180
1270
+ },
1271
+ {
1272
+ "epoch": 0.4641025641025641,
1273
+ "grad_norm": 1.8702125549316406,
1274
+ "learning_rate": 5.412371134020619e-06,
1275
+ "loss": 1.0039,
1276
+ "step": 181
1277
+ },
1278
+ {
1279
+ "epoch": 0.4666666666666667,
1280
+ "grad_norm": 2.0988097190856934,
1281
+ "learning_rate": 5.38659793814433e-06,
1282
+ "loss": 1.0225,
1283
+ "step": 182
1284
+ },
1285
+ {
1286
+ "epoch": 0.46923076923076923,
1287
+ "grad_norm": 1.9512522220611572,
1288
+ "learning_rate": 5.360824742268042e-06,
1289
+ "loss": 0.9854,
1290
+ "step": 183
1291
+ },
1292
+ {
1293
+ "epoch": 0.4717948717948718,
1294
+ "grad_norm": 1.8114992380142212,
1295
+ "learning_rate": 5.335051546391753e-06,
1296
+ "loss": 0.8008,
1297
+ "step": 184
1298
+ },
1299
+ {
1300
+ "epoch": 0.47435897435897434,
1301
+ "grad_norm": 1.7766282558441162,
1302
+ "learning_rate": 5.309278350515464e-06,
1303
+ "loss": 0.9795,
1304
+ "step": 185
1305
+ },
1306
+ {
1307
+ "epoch": 0.47692307692307695,
1308
+ "grad_norm": 2.319395065307617,
1309
+ "learning_rate": 5.2835051546391755e-06,
1310
+ "loss": 1.1572,
1311
+ "step": 186
1312
+ },
1313
+ {
1314
+ "epoch": 0.4794871794871795,
1315
+ "grad_norm": 1.7959656715393066,
1316
+ "learning_rate": 5.257731958762888e-06,
1317
+ "loss": 0.8994,
1318
+ "step": 187
1319
+ },
1320
+ {
1321
+ "epoch": 0.48205128205128206,
1322
+ "grad_norm": 1.7262598276138306,
1323
+ "learning_rate": 5.231958762886599e-06,
1324
+ "loss": 1.0264,
1325
+ "step": 188
1326
+ },
1327
+ {
1328
+ "epoch": 0.4846153846153846,
1329
+ "grad_norm": 1.9442336559295654,
1330
+ "learning_rate": 5.20618556701031e-06,
1331
+ "loss": 1.0674,
1332
+ "step": 189
1333
+ },
1334
+ {
1335
+ "epoch": 0.48717948717948717,
1336
+ "grad_norm": 1.7376888990402222,
1337
+ "learning_rate": 5.1804123711340214e-06,
1338
+ "loss": 0.8032,
1339
+ "step": 190
1340
+ },
1341
+ {
1342
+ "epoch": 0.4897435897435897,
1343
+ "grad_norm": 1.5488858222961426,
1344
+ "learning_rate": 5.154639175257732e-06,
1345
+ "loss": 0.8101,
1346
+ "step": 191
1347
+ },
1348
+ {
1349
+ "epoch": 0.49230769230769234,
1350
+ "grad_norm": 1.9175901412963867,
1351
+ "learning_rate": 5.128865979381443e-06,
1352
+ "loss": 0.8418,
1353
+ "step": 192
1354
+ },
1355
+ {
1356
+ "epoch": 0.4948717948717949,
1357
+ "grad_norm": 2.069321393966675,
1358
+ "learning_rate": 5.1030927835051544e-06,
1359
+ "loss": 1.1826,
1360
+ "step": 193
1361
+ },
1362
+ {
1363
+ "epoch": 0.49743589743589745,
1364
+ "grad_norm": 1.918543815612793,
1365
+ "learning_rate": 5.077319587628866e-06,
1366
+ "loss": 1.0059,
1367
+ "step": 194
1368
+ },
1369
+ {
1370
+ "epoch": 0.5,
1371
+ "grad_norm": 1.7345309257507324,
1372
+ "learning_rate": 5.051546391752578e-06,
1373
+ "loss": 0.9028,
1374
+ "step": 195
1375
+ },
1376
+ {
1377
+ "epoch": 0.5025641025641026,
1378
+ "grad_norm": 1.7581024169921875,
1379
+ "learning_rate": 5.025773195876289e-06,
1380
+ "loss": 1.0,
1381
+ "step": 196
1382
+ },
1383
+ {
1384
+ "epoch": 0.5051282051282051,
1385
+ "grad_norm": 2.021634817123413,
1386
+ "learning_rate": 5e-06,
1387
+ "loss": 0.8677,
1388
+ "step": 197
1389
+ },
1390
+ {
1391
+ "epoch": 0.5076923076923077,
1392
+ "grad_norm": 2.0879619121551514,
1393
+ "learning_rate": 4.974226804123712e-06,
1394
+ "loss": 1.1279,
1395
+ "step": 198
1396
+ },
1397
+ {
1398
+ "epoch": 0.5102564102564102,
1399
+ "grad_norm": 2.040804386138916,
1400
+ "learning_rate": 4.948453608247423e-06,
1401
+ "loss": 1.2178,
1402
+ "step": 199
1403
+ },
1404
+ {
1405
+ "epoch": 0.5128205128205128,
1406
+ "grad_norm": 2.0652830600738525,
1407
+ "learning_rate": 4.922680412371135e-06,
1408
+ "loss": 0.873,
1409
+ "step": 200
1410
+ },
1411
+ {
1412
+ "epoch": 0.5153846153846153,
1413
+ "grad_norm": 1.8770358562469482,
1414
+ "learning_rate": 4.8969072164948455e-06,
1415
+ "loss": 0.7212,
1416
+ "step": 201
1417
+ },
1418
+ {
1419
+ "epoch": 0.517948717948718,
1420
+ "grad_norm": 1.8745349645614624,
1421
+ "learning_rate": 4.871134020618557e-06,
1422
+ "loss": 1.126,
1423
+ "step": 202
1424
+ },
1425
+ {
1426
+ "epoch": 0.5205128205128206,
1427
+ "grad_norm": 1.8858857154846191,
1428
+ "learning_rate": 4.845360824742268e-06,
1429
+ "loss": 1.0771,
1430
+ "step": 203
1431
+ },
1432
+ {
1433
+ "epoch": 0.5230769230769231,
1434
+ "grad_norm": 2.110069513320923,
1435
+ "learning_rate": 4.81958762886598e-06,
1436
+ "loss": 1.2754,
1437
+ "step": 204
1438
+ },
1439
+ {
1440
+ "epoch": 0.5256410256410257,
1441
+ "grad_norm": 4.52376127243042,
1442
+ "learning_rate": 4.7938144329896915e-06,
1443
+ "loss": 1.1182,
1444
+ "step": 205
1445
+ },
1446
+ {
1447
+ "epoch": 0.5282051282051282,
1448
+ "grad_norm": 1.6591471433639526,
1449
+ "learning_rate": 4.768041237113403e-06,
1450
+ "loss": 0.8276,
1451
+ "step": 206
1452
+ },
1453
+ {
1454
+ "epoch": 0.5307692307692308,
1455
+ "grad_norm": 1.9472140073776245,
1456
+ "learning_rate": 4.742268041237113e-06,
1457
+ "loss": 1.0273,
1458
+ "step": 207
1459
+ },
1460
+ {
1461
+ "epoch": 0.5333333333333333,
1462
+ "grad_norm": 1.8485890626907349,
1463
+ "learning_rate": 4.716494845360825e-06,
1464
+ "loss": 0.813,
1465
+ "step": 208
1466
+ },
1467
+ {
1468
+ "epoch": 0.5358974358974359,
1469
+ "grad_norm": 1.7967491149902344,
1470
+ "learning_rate": 4.690721649484537e-06,
1471
+ "loss": 0.9946,
1472
+ "step": 209
1473
+ },
1474
+ {
1475
+ "epoch": 0.5384615384615384,
1476
+ "grad_norm": 1.7534973621368408,
1477
+ "learning_rate": 4.664948453608248e-06,
1478
+ "loss": 0.7993,
1479
+ "step": 210
1480
+ },
1481
+ {
1482
+ "epoch": 0.541025641025641,
1483
+ "grad_norm": 1.8620507717132568,
1484
+ "learning_rate": 4.639175257731959e-06,
1485
+ "loss": 0.9341,
1486
+ "step": 211
1487
+ },
1488
+ {
1489
+ "epoch": 0.5435897435897435,
1490
+ "grad_norm": 1.8512839078903198,
1491
+ "learning_rate": 4.6134020618556705e-06,
1492
+ "loss": 0.8013,
1493
+ "step": 212
1494
+ },
1495
+ {
1496
+ "epoch": 0.5461538461538461,
1497
+ "grad_norm": 2.151174306869507,
1498
+ "learning_rate": 4.587628865979382e-06,
1499
+ "loss": 1.2969,
1500
+ "step": 213
1501
+ },
1502
+ {
1503
+ "epoch": 0.5487179487179488,
1504
+ "grad_norm": 1.9421318769454956,
1505
+ "learning_rate": 4.561855670103093e-06,
1506
+ "loss": 0.9375,
1507
+ "step": 214
1508
+ },
1509
+ {
1510
+ "epoch": 0.5512820512820513,
1511
+ "grad_norm": 1.6634801626205444,
1512
+ "learning_rate": 4.536082474226804e-06,
1513
+ "loss": 0.7603,
1514
+ "step": 215
1515
+ },
1516
+ {
1517
+ "epoch": 0.5538461538461539,
1518
+ "grad_norm": 1.8529914617538452,
1519
+ "learning_rate": 4.510309278350516e-06,
1520
+ "loss": 0.8545,
1521
+ "step": 216
1522
+ },
1523
+ {
1524
+ "epoch": 0.5564102564102564,
1525
+ "grad_norm": 1.8996697664260864,
1526
+ "learning_rate": 4.484536082474228e-06,
1527
+ "loss": 0.9492,
1528
+ "step": 217
1529
+ },
1530
+ {
1531
+ "epoch": 0.558974358974359,
1532
+ "grad_norm": 1.793915033340454,
1533
+ "learning_rate": 4.458762886597939e-06,
1534
+ "loss": 0.6826,
1535
+ "step": 218
1536
+ },
1537
+ {
1538
+ "epoch": 0.5615384615384615,
1539
+ "grad_norm": 2.973825454711914,
1540
+ "learning_rate": 4.4329896907216494e-06,
1541
+ "loss": 0.9023,
1542
+ "step": 219
1543
+ },
1544
+ {
1545
+ "epoch": 0.5641025641025641,
1546
+ "grad_norm": 1.786086082458496,
1547
+ "learning_rate": 4.407216494845361e-06,
1548
+ "loss": 0.9502,
1549
+ "step": 220
1550
+ },
1551
+ {
1552
+ "epoch": 0.5666666666666667,
1553
+ "grad_norm": 2.263026714324951,
1554
+ "learning_rate": 4.381443298969073e-06,
1555
+ "loss": 0.9326,
1556
+ "step": 221
1557
+ },
1558
+ {
1559
+ "epoch": 0.5692307692307692,
1560
+ "grad_norm": 2.35546612739563,
1561
+ "learning_rate": 4.355670103092784e-06,
1562
+ "loss": 1.1348,
1563
+ "step": 222
1564
+ },
1565
+ {
1566
+ "epoch": 0.5717948717948718,
1567
+ "grad_norm": 1.6735016107559204,
1568
+ "learning_rate": 4.329896907216495e-06,
1569
+ "loss": 0.9204,
1570
+ "step": 223
1571
+ },
1572
+ {
1573
+ "epoch": 0.5743589743589743,
1574
+ "grad_norm": 2.4395010471343994,
1575
+ "learning_rate": 4.304123711340207e-06,
1576
+ "loss": 1.1689,
1577
+ "step": 224
1578
+ },
1579
+ {
1580
+ "epoch": 0.5769230769230769,
1581
+ "grad_norm": 1.8484439849853516,
1582
+ "learning_rate": 4.278350515463918e-06,
1583
+ "loss": 0.9751,
1584
+ "step": 225
1585
+ },
1586
+ {
1587
+ "epoch": 0.5794871794871795,
1588
+ "grad_norm": 2.61309552192688,
1589
+ "learning_rate": 4.252577319587629e-06,
1590
+ "loss": 0.9272,
1591
+ "step": 226
1592
+ },
1593
+ {
1594
+ "epoch": 0.5820512820512821,
1595
+ "grad_norm": 1.8143435716629028,
1596
+ "learning_rate": 4.2268041237113405e-06,
1597
+ "loss": 1.0508,
1598
+ "step": 227
1599
+ },
1600
+ {
1601
+ "epoch": 0.5846153846153846,
1602
+ "grad_norm": 1.9212270975112915,
1603
+ "learning_rate": 4.201030927835052e-06,
1604
+ "loss": 0.8813,
1605
+ "step": 228
1606
+ },
1607
+ {
1608
+ "epoch": 0.5871794871794872,
1609
+ "grad_norm": 2.3576104640960693,
1610
+ "learning_rate": 4.175257731958763e-06,
1611
+ "loss": 0.98,
1612
+ "step": 229
1613
+ },
1614
+ {
1615
+ "epoch": 0.5897435897435898,
1616
+ "grad_norm": 2.2258710861206055,
1617
+ "learning_rate": 4.149484536082475e-06,
1618
+ "loss": 0.9766,
1619
+ "step": 230
1620
+ },
1621
+ {
1622
+ "epoch": 0.5923076923076923,
1623
+ "grad_norm": 1.8784958124160767,
1624
+ "learning_rate": 4.123711340206186e-06,
1625
+ "loss": 0.9575,
1626
+ "step": 231
1627
+ },
1628
+ {
1629
+ "epoch": 0.5948717948717949,
1630
+ "grad_norm": 1.7360793352127075,
1631
+ "learning_rate": 4.097938144329897e-06,
1632
+ "loss": 0.9014,
1633
+ "step": 232
1634
+ },
1635
+ {
1636
+ "epoch": 0.5974358974358974,
1637
+ "grad_norm": 2.718904733657837,
1638
+ "learning_rate": 4.072164948453608e-06,
1639
+ "loss": 0.8682,
1640
+ "step": 233
1641
+ },
1642
+ {
1643
+ "epoch": 0.6,
1644
+ "grad_norm": 3.4316585063934326,
1645
+ "learning_rate": 4.04639175257732e-06,
1646
+ "loss": 0.8096,
1647
+ "step": 234
1648
+ },
1649
+ {
1650
+ "epoch": 0.6025641025641025,
1651
+ "grad_norm": 1.9802138805389404,
1652
+ "learning_rate": 4.020618556701032e-06,
1653
+ "loss": 1.1055,
1654
+ "step": 235
1655
+ },
1656
+ {
1657
+ "epoch": 0.6051282051282051,
1658
+ "grad_norm": 2.3054115772247314,
1659
+ "learning_rate": 3.994845360824743e-06,
1660
+ "loss": 0.8696,
1661
+ "step": 236
1662
+ },
1663
+ {
1664
+ "epoch": 0.6076923076923076,
1665
+ "grad_norm": 2.1070103645324707,
1666
+ "learning_rate": 3.969072164948453e-06,
1667
+ "loss": 0.9907,
1668
+ "step": 237
1669
+ },
1670
+ {
1671
+ "epoch": 0.6102564102564103,
1672
+ "grad_norm": 1.71999192237854,
1673
+ "learning_rate": 3.9432989690721655e-06,
1674
+ "loss": 1.0342,
1675
+ "step": 238
1676
+ },
1677
+ {
1678
+ "epoch": 0.6128205128205129,
1679
+ "grad_norm": 1.7554974555969238,
1680
+ "learning_rate": 3.917525773195877e-06,
1681
+ "loss": 0.9712,
1682
+ "step": 239
1683
+ },
1684
+ {
1685
+ "epoch": 0.6153846153846154,
1686
+ "grad_norm": 1.8095436096191406,
1687
+ "learning_rate": 3.891752577319588e-06,
1688
+ "loss": 1.0586,
1689
+ "step": 240
1690
+ },
1691
+ {
1692
+ "epoch": 0.617948717948718,
1693
+ "grad_norm": 2.331573963165283,
1694
+ "learning_rate": 3.865979381443299e-06,
1695
+ "loss": 1.1729,
1696
+ "step": 241
1697
+ },
1698
+ {
1699
+ "epoch": 0.6205128205128205,
1700
+ "grad_norm": 1.8929247856140137,
1701
+ "learning_rate": 3.840206185567011e-06,
1702
+ "loss": 1.0576,
1703
+ "step": 242
1704
+ },
1705
+ {
1706
+ "epoch": 0.6230769230769231,
1707
+ "grad_norm": 1.6739861965179443,
1708
+ "learning_rate": 3.814432989690722e-06,
1709
+ "loss": 0.8008,
1710
+ "step": 243
1711
+ },
1712
+ {
1713
+ "epoch": 0.6256410256410256,
1714
+ "grad_norm": 1.6616827249526978,
1715
+ "learning_rate": 3.788659793814433e-06,
1716
+ "loss": 0.876,
1717
+ "step": 244
1718
+ },
1719
+ {
1720
+ "epoch": 0.6282051282051282,
1721
+ "grad_norm": 7.3671746253967285,
1722
+ "learning_rate": 3.7628865979381445e-06,
1723
+ "loss": 1.0293,
1724
+ "step": 245
1725
+ },
1726
+ {
1727
+ "epoch": 0.6307692307692307,
1728
+ "grad_norm": 1.9617962837219238,
1729
+ "learning_rate": 3.737113402061856e-06,
1730
+ "loss": 1.0117,
1731
+ "step": 246
1732
+ },
1733
+ {
1734
+ "epoch": 0.6333333333333333,
1735
+ "grad_norm": 1.3733716011047363,
1736
+ "learning_rate": 3.7113402061855674e-06,
1737
+ "loss": 0.6865,
1738
+ "step": 247
1739
+ },
1740
+ {
1741
+ "epoch": 0.6358974358974359,
1742
+ "grad_norm": 1.6532529592514038,
1743
+ "learning_rate": 3.6855670103092787e-06,
1744
+ "loss": 0.9604,
1745
+ "step": 248
1746
+ },
1747
+ {
1748
+ "epoch": 0.6384615384615384,
1749
+ "grad_norm": 1.8402736186981201,
1750
+ "learning_rate": 3.6597938144329896e-06,
1751
+ "loss": 0.916,
1752
+ "step": 249
1753
+ },
1754
+ {
1755
+ "epoch": 0.6410256410256411,
1756
+ "grad_norm": 1.7600955963134766,
1757
+ "learning_rate": 3.6340206185567013e-06,
1758
+ "loss": 0.9678,
1759
+ "step": 250
1760
+ },
1761
+ {
1762
+ "epoch": 0.6435897435897436,
1763
+ "grad_norm": 1.6891589164733887,
1764
+ "learning_rate": 3.6082474226804126e-06,
1765
+ "loss": 0.793,
1766
+ "step": 251
1767
+ },
1768
+ {
1769
+ "epoch": 0.6461538461538462,
1770
+ "grad_norm": 1.8142110109329224,
1771
+ "learning_rate": 3.582474226804124e-06,
1772
+ "loss": 1.0518,
1773
+ "step": 252
1774
+ },
1775
+ {
1776
+ "epoch": 0.6487179487179487,
1777
+ "grad_norm": 2.1421236991882324,
1778
+ "learning_rate": 3.5567010309278356e-06,
1779
+ "loss": 0.9414,
1780
+ "step": 253
1781
+ },
1782
+ {
1783
+ "epoch": 0.6512820512820513,
1784
+ "grad_norm": 5.681818962097168,
1785
+ "learning_rate": 3.530927835051547e-06,
1786
+ "loss": 0.9951,
1787
+ "step": 254
1788
+ },
1789
+ {
1790
+ "epoch": 0.6538461538461539,
1791
+ "grad_norm": 2.093968391418457,
1792
+ "learning_rate": 3.5051546391752577e-06,
1793
+ "loss": 0.7842,
1794
+ "step": 255
1795
+ },
1796
+ {
1797
+ "epoch": 0.6564102564102564,
1798
+ "grad_norm": 1.8707085847854614,
1799
+ "learning_rate": 3.4793814432989694e-06,
1800
+ "loss": 0.9858,
1801
+ "step": 256
1802
+ },
1803
+ {
1804
+ "epoch": 0.658974358974359,
1805
+ "grad_norm": 1.9755574464797974,
1806
+ "learning_rate": 3.4536082474226807e-06,
1807
+ "loss": 0.9136,
1808
+ "step": 257
1809
+ },
1810
+ {
1811
+ "epoch": 0.6615384615384615,
1812
+ "grad_norm": 2.0634946823120117,
1813
+ "learning_rate": 3.427835051546392e-06,
1814
+ "loss": 0.7593,
1815
+ "step": 258
1816
+ },
1817
+ {
1818
+ "epoch": 0.6641025641025641,
1819
+ "grad_norm": 1.842301845550537,
1820
+ "learning_rate": 3.4020618556701037e-06,
1821
+ "loss": 0.8062,
1822
+ "step": 259
1823
+ },
1824
+ {
1825
+ "epoch": 0.6666666666666666,
1826
+ "grad_norm": 1.857254981994629,
1827
+ "learning_rate": 3.376288659793815e-06,
1828
+ "loss": 1.2021,
1829
+ "step": 260
1830
+ },
1831
+ {
1832
+ "epoch": 0.6692307692307692,
1833
+ "grad_norm": 1.9125348329544067,
1834
+ "learning_rate": 3.350515463917526e-06,
1835
+ "loss": 1.084,
1836
+ "step": 261
1837
+ },
1838
+ {
1839
+ "epoch": 0.6717948717948717,
1840
+ "grad_norm": 1.8903979063034058,
1841
+ "learning_rate": 3.324742268041237e-06,
1842
+ "loss": 0.7666,
1843
+ "step": 262
1844
+ },
1845
+ {
1846
+ "epoch": 0.6743589743589744,
1847
+ "grad_norm": 1.981501579284668,
1848
+ "learning_rate": 3.298969072164949e-06,
1849
+ "loss": 1.0508,
1850
+ "step": 263
1851
+ },
1852
+ {
1853
+ "epoch": 0.676923076923077,
1854
+ "grad_norm": 1.5312262773513794,
1855
+ "learning_rate": 3.27319587628866e-06,
1856
+ "loss": 0.7231,
1857
+ "step": 264
1858
+ },
1859
+ {
1860
+ "epoch": 0.6794871794871795,
1861
+ "grad_norm": 1.6376142501831055,
1862
+ "learning_rate": 3.2474226804123714e-06,
1863
+ "loss": 0.8013,
1864
+ "step": 265
1865
+ },
1866
+ {
1867
+ "epoch": 0.6820512820512821,
1868
+ "grad_norm": 1.5917991399765015,
1869
+ "learning_rate": 3.221649484536083e-06,
1870
+ "loss": 0.8042,
1871
+ "step": 266
1872
+ },
1873
+ {
1874
+ "epoch": 0.6846153846153846,
1875
+ "grad_norm": 1.497527837753296,
1876
+ "learning_rate": 3.195876288659794e-06,
1877
+ "loss": 0.7031,
1878
+ "step": 267
1879
+ },
1880
+ {
1881
+ "epoch": 0.6871794871794872,
1882
+ "grad_norm": 1.692023515701294,
1883
+ "learning_rate": 3.170103092783505e-06,
1884
+ "loss": 0.6646,
1885
+ "step": 268
1886
+ },
1887
+ {
1888
+ "epoch": 0.6897435897435897,
1889
+ "grad_norm": 1.862017273902893,
1890
+ "learning_rate": 3.1443298969072165e-06,
1891
+ "loss": 0.8765,
1892
+ "step": 269
1893
+ },
1894
+ {
1895
+ "epoch": 0.6923076923076923,
1896
+ "grad_norm": 2.128854513168335,
1897
+ "learning_rate": 3.118556701030928e-06,
1898
+ "loss": 0.7183,
1899
+ "step": 270
1900
+ },
1901
+ {
1902
+ "epoch": 0.6948717948717948,
1903
+ "grad_norm": 1.7785433530807495,
1904
+ "learning_rate": 3.0927835051546395e-06,
1905
+ "loss": 0.9966,
1906
+ "step": 271
1907
+ },
1908
+ {
1909
+ "epoch": 0.6974358974358974,
1910
+ "grad_norm": 1.8306283950805664,
1911
+ "learning_rate": 3.067010309278351e-06,
1912
+ "loss": 0.7773,
1913
+ "step": 272
1914
+ },
1915
+ {
1916
+ "epoch": 0.7,
1917
+ "grad_norm": 1.5251365900039673,
1918
+ "learning_rate": 3.041237113402062e-06,
1919
+ "loss": 0.7046,
1920
+ "step": 273
1921
+ },
1922
+ {
1923
+ "epoch": 0.7025641025641025,
1924
+ "grad_norm": 2.0568642616271973,
1925
+ "learning_rate": 3.0154639175257733e-06,
1926
+ "loss": 1.0459,
1927
+ "step": 274
1928
+ },
1929
+ {
1930
+ "epoch": 0.7051282051282052,
1931
+ "grad_norm": 1.6169660091400146,
1932
+ "learning_rate": 2.9896907216494846e-06,
1933
+ "loss": 0.7451,
1934
+ "step": 275
1935
+ },
1936
+ {
1937
+ "epoch": 0.7076923076923077,
1938
+ "grad_norm": 1.6986936330795288,
1939
+ "learning_rate": 2.9639175257731963e-06,
1940
+ "loss": 0.8735,
1941
+ "step": 276
1942
+ },
1943
+ {
1944
+ "epoch": 0.7102564102564103,
1945
+ "grad_norm": 1.6713733673095703,
1946
+ "learning_rate": 2.9381443298969076e-06,
1947
+ "loss": 0.8862,
1948
+ "step": 277
1949
+ },
1950
+ {
1951
+ "epoch": 0.7128205128205128,
1952
+ "grad_norm": 1.7637569904327393,
1953
+ "learning_rate": 2.912371134020619e-06,
1954
+ "loss": 0.9609,
1955
+ "step": 278
1956
+ },
1957
+ {
1958
+ "epoch": 0.7153846153846154,
1959
+ "grad_norm": 2.076930284500122,
1960
+ "learning_rate": 2.8865979381443297e-06,
1961
+ "loss": 1.1377,
1962
+ "step": 279
1963
+ },
1964
+ {
1965
+ "epoch": 0.717948717948718,
1966
+ "grad_norm": 1.972031831741333,
1967
+ "learning_rate": 2.8608247422680414e-06,
1968
+ "loss": 0.9395,
1969
+ "step": 280
1970
+ },
1971
+ {
1972
+ "epoch": 0.7205128205128205,
1973
+ "grad_norm": 1.8608795404434204,
1974
+ "learning_rate": 2.8350515463917527e-06,
1975
+ "loss": 1.0654,
1976
+ "step": 281
1977
+ },
1978
+ {
1979
+ "epoch": 0.7230769230769231,
1980
+ "grad_norm": 3.467540979385376,
1981
+ "learning_rate": 2.809278350515464e-06,
1982
+ "loss": 0.7603,
1983
+ "step": 282
1984
+ },
1985
+ {
1986
+ "epoch": 0.7256410256410256,
1987
+ "grad_norm": 1.765555739402771,
1988
+ "learning_rate": 2.7835051546391757e-06,
1989
+ "loss": 0.6758,
1990
+ "step": 283
1991
+ },
1992
+ {
1993
+ "epoch": 0.7282051282051282,
1994
+ "grad_norm": 1.6693044900894165,
1995
+ "learning_rate": 2.757731958762887e-06,
1996
+ "loss": 0.8433,
1997
+ "step": 284
1998
+ },
1999
+ {
2000
+ "epoch": 0.7307692307692307,
2001
+ "grad_norm": 1.9119174480438232,
2002
+ "learning_rate": 2.731958762886598e-06,
2003
+ "loss": 0.8184,
2004
+ "step": 285
2005
+ },
2006
+ {
2007
+ "epoch": 0.7333333333333333,
2008
+ "grad_norm": 2.043612241744995,
2009
+ "learning_rate": 2.7061855670103095e-06,
2010
+ "loss": 1.0049,
2011
+ "step": 286
2012
+ },
2013
+ {
2014
+ "epoch": 0.735897435897436,
2015
+ "grad_norm": 1.919756531715393,
2016
+ "learning_rate": 2.680412371134021e-06,
2017
+ "loss": 0.9229,
2018
+ "step": 287
2019
+ },
2020
+ {
2021
+ "epoch": 0.7384615384615385,
2022
+ "grad_norm": 1.8900898694992065,
2023
+ "learning_rate": 2.654639175257732e-06,
2024
+ "loss": 1.0078,
2025
+ "step": 288
2026
+ },
2027
+ {
2028
+ "epoch": 0.7410256410256411,
2029
+ "grad_norm": 1.793310284614563,
2030
+ "learning_rate": 2.628865979381444e-06,
2031
+ "loss": 1.0752,
2032
+ "step": 289
2033
+ },
2034
+ {
2035
+ "epoch": 0.7435897435897436,
2036
+ "grad_norm": 2.732642889022827,
2037
+ "learning_rate": 2.603092783505155e-06,
2038
+ "loss": 0.9229,
2039
+ "step": 290
2040
+ },
2041
+ {
2042
+ "epoch": 0.7461538461538462,
2043
+ "grad_norm": 1.845354676246643,
2044
+ "learning_rate": 2.577319587628866e-06,
2045
+ "loss": 0.8286,
2046
+ "step": 291
2047
+ },
2048
+ {
2049
+ "epoch": 0.7487179487179487,
2050
+ "grad_norm": 1.9272360801696777,
2051
+ "learning_rate": 2.5515463917525772e-06,
2052
+ "loss": 1.0518,
2053
+ "step": 292
2054
+ },
2055
+ {
2056
+ "epoch": 0.7512820512820513,
2057
+ "grad_norm": 2.1714913845062256,
2058
+ "learning_rate": 2.525773195876289e-06,
2059
+ "loss": 0.9043,
2060
+ "step": 293
2061
+ },
2062
+ {
2063
+ "epoch": 0.7538461538461538,
2064
+ "grad_norm": 1.7473788261413574,
2065
+ "learning_rate": 2.5e-06,
2066
+ "loss": 0.7793,
2067
+ "step": 294
2068
+ },
2069
+ {
2070
+ "epoch": 0.7564102564102564,
2071
+ "grad_norm": 1.9058947563171387,
2072
+ "learning_rate": 2.4742268041237115e-06,
2073
+ "loss": 0.8643,
2074
+ "step": 295
2075
+ },
2076
+ {
2077
+ "epoch": 0.7589743589743589,
2078
+ "grad_norm": 2.064485788345337,
2079
+ "learning_rate": 2.4484536082474228e-06,
2080
+ "loss": 1.1475,
2081
+ "step": 296
2082
+ },
2083
+ {
2084
+ "epoch": 0.7615384615384615,
2085
+ "grad_norm": 2.100177526473999,
2086
+ "learning_rate": 2.422680412371134e-06,
2087
+ "loss": 0.853,
2088
+ "step": 297
2089
+ },
2090
+ {
2091
+ "epoch": 0.764102564102564,
2092
+ "grad_norm": 2.2327897548675537,
2093
+ "learning_rate": 2.3969072164948458e-06,
2094
+ "loss": 1.2168,
2095
+ "step": 298
2096
+ },
2097
+ {
2098
+ "epoch": 0.7666666666666667,
2099
+ "grad_norm": 1.9748061895370483,
2100
+ "learning_rate": 2.3711340206185566e-06,
2101
+ "loss": 1.0713,
2102
+ "step": 299
2103
+ },
2104
+ {
2105
+ "epoch": 0.7692307692307693,
2106
+ "grad_norm": 1.987243890762329,
2107
+ "learning_rate": 2.3453608247422683e-06,
2108
+ "loss": 1.0508,
2109
+ "step": 300
2110
+ },
2111
+ {
2112
+ "epoch": 0.7717948717948718,
2113
+ "grad_norm": 2.191959857940674,
2114
+ "learning_rate": 2.3195876288659796e-06,
2115
+ "loss": 0.9326,
2116
+ "step": 301
2117
+ },
2118
+ {
2119
+ "epoch": 0.7743589743589744,
2120
+ "grad_norm": 2.242733955383301,
2121
+ "learning_rate": 2.293814432989691e-06,
2122
+ "loss": 0.7515,
2123
+ "step": 302
2124
+ },
2125
+ {
2126
+ "epoch": 0.7769230769230769,
2127
+ "grad_norm": 1.6882741451263428,
2128
+ "learning_rate": 2.268041237113402e-06,
2129
+ "loss": 0.7534,
2130
+ "step": 303
2131
+ },
2132
+ {
2133
+ "epoch": 0.7794871794871795,
2134
+ "grad_norm": 2.7890372276306152,
2135
+ "learning_rate": 2.242268041237114e-06,
2136
+ "loss": 0.9082,
2137
+ "step": 304
2138
+ },
2139
+ {
2140
+ "epoch": 0.782051282051282,
2141
+ "grad_norm": 2.7322838306427,
2142
+ "learning_rate": 2.2164948453608247e-06,
2143
+ "loss": 1.0332,
2144
+ "step": 305
2145
+ },
2146
+ {
2147
+ "epoch": 0.7846153846153846,
2148
+ "grad_norm": 1.9101502895355225,
2149
+ "learning_rate": 2.1907216494845364e-06,
2150
+ "loss": 1.0088,
2151
+ "step": 306
2152
+ },
2153
+ {
2154
+ "epoch": 0.7871794871794872,
2155
+ "grad_norm": 1.7795121669769287,
2156
+ "learning_rate": 2.1649484536082477e-06,
2157
+ "loss": 0.9082,
2158
+ "step": 307
2159
+ },
2160
+ {
2161
+ "epoch": 0.7897435897435897,
2162
+ "grad_norm": 1.8345370292663574,
2163
+ "learning_rate": 2.139175257731959e-06,
2164
+ "loss": 1.0576,
2165
+ "step": 308
2166
+ },
2167
+ {
2168
+ "epoch": 0.7923076923076923,
2169
+ "grad_norm": 2.1167471408843994,
2170
+ "learning_rate": 2.1134020618556703e-06,
2171
+ "loss": 0.918,
2172
+ "step": 309
2173
+ },
2174
+ {
2175
+ "epoch": 0.7948717948717948,
2176
+ "grad_norm": 1.7261496782302856,
2177
+ "learning_rate": 2.0876288659793816e-06,
2178
+ "loss": 0.8975,
2179
+ "step": 310
2180
+ },
2181
+ {
2182
+ "epoch": 0.7974358974358975,
2183
+ "grad_norm": 1.793904185295105,
2184
+ "learning_rate": 2.061855670103093e-06,
2185
+ "loss": 0.8916,
2186
+ "step": 311
2187
+ },
2188
+ {
2189
+ "epoch": 0.8,
2190
+ "grad_norm": 1.9415448904037476,
2191
+ "learning_rate": 2.036082474226804e-06,
2192
+ "loss": 0.8379,
2193
+ "step": 312
2194
+ },
2195
+ {
2196
+ "epoch": 0.8025641025641026,
2197
+ "grad_norm": 1.8090825080871582,
2198
+ "learning_rate": 2.010309278350516e-06,
2199
+ "loss": 0.8784,
2200
+ "step": 313
2201
+ },
2202
+ {
2203
+ "epoch": 0.8051282051282052,
2204
+ "grad_norm": 1.775429368019104,
2205
+ "learning_rate": 1.9845360824742267e-06,
2206
+ "loss": 0.8643,
2207
+ "step": 314
2208
+ },
2209
+ {
2210
+ "epoch": 0.8076923076923077,
2211
+ "grad_norm": 1.848243236541748,
2212
+ "learning_rate": 1.9587628865979384e-06,
2213
+ "loss": 1.1084,
2214
+ "step": 315
2215
+ },
2216
+ {
2217
+ "epoch": 0.8102564102564103,
2218
+ "grad_norm": 1.7999858856201172,
2219
+ "learning_rate": 1.9329896907216497e-06,
2220
+ "loss": 0.9321,
2221
+ "step": 316
2222
+ },
2223
+ {
2224
+ "epoch": 0.8128205128205128,
2225
+ "grad_norm": 2.8370208740234375,
2226
+ "learning_rate": 1.907216494845361e-06,
2227
+ "loss": 0.9883,
2228
+ "step": 317
2229
+ },
2230
+ {
2231
+ "epoch": 0.8153846153846154,
2232
+ "grad_norm": 2.2633893489837646,
2233
+ "learning_rate": 1.8814432989690722e-06,
2234
+ "loss": 1.0166,
2235
+ "step": 318
2236
+ },
2237
+ {
2238
+ "epoch": 0.8179487179487179,
2239
+ "grad_norm": 1.9850558042526245,
2240
+ "learning_rate": 1.8556701030927837e-06,
2241
+ "loss": 1.0283,
2242
+ "step": 319
2243
+ },
2244
+ {
2245
+ "epoch": 0.8205128205128205,
2246
+ "grad_norm": 1.904843807220459,
2247
+ "learning_rate": 1.8298969072164948e-06,
2248
+ "loss": 0.9829,
2249
+ "step": 320
2250
+ },
2251
+ {
2252
+ "epoch": 0.823076923076923,
2253
+ "grad_norm": 1.7778921127319336,
2254
+ "learning_rate": 1.8041237113402063e-06,
2255
+ "loss": 0.9229,
2256
+ "step": 321
2257
+ },
2258
+ {
2259
+ "epoch": 0.8256410256410256,
2260
+ "grad_norm": 1.792877197265625,
2261
+ "learning_rate": 1.7783505154639178e-06,
2262
+ "loss": 0.876,
2263
+ "step": 322
2264
+ },
2265
+ {
2266
+ "epoch": 0.8282051282051283,
2267
+ "grad_norm": 1.8950697183609009,
2268
+ "learning_rate": 1.7525773195876288e-06,
2269
+ "loss": 0.915,
2270
+ "step": 323
2271
+ },
2272
+ {
2273
+ "epoch": 0.8307692307692308,
2274
+ "grad_norm": 1.911402940750122,
2275
+ "learning_rate": 1.7268041237113403e-06,
2276
+ "loss": 1.043,
2277
+ "step": 324
2278
+ },
2279
+ {
2280
+ "epoch": 0.8333333333333334,
2281
+ "grad_norm": 2.1029365062713623,
2282
+ "learning_rate": 1.7010309278350518e-06,
2283
+ "loss": 0.9243,
2284
+ "step": 325
2285
+ },
2286
+ {
2287
+ "epoch": 0.8358974358974359,
2288
+ "grad_norm": 2.052480936050415,
2289
+ "learning_rate": 1.675257731958763e-06,
2290
+ "loss": 1.2256,
2291
+ "step": 326
2292
+ },
2293
+ {
2294
+ "epoch": 0.8384615384615385,
2295
+ "grad_norm": 1.7406338453292847,
2296
+ "learning_rate": 1.6494845360824744e-06,
2297
+ "loss": 0.8804,
2298
+ "step": 327
2299
+ },
2300
+ {
2301
+ "epoch": 0.841025641025641,
2302
+ "grad_norm": 1.8102054595947266,
2303
+ "learning_rate": 1.6237113402061857e-06,
2304
+ "loss": 0.854,
2305
+ "step": 328
2306
+ },
2307
+ {
2308
+ "epoch": 0.8435897435897436,
2309
+ "grad_norm": 1.9868026971817017,
2310
+ "learning_rate": 1.597938144329897e-06,
2311
+ "loss": 0.8491,
2312
+ "step": 329
2313
+ },
2314
+ {
2315
+ "epoch": 0.8461538461538461,
2316
+ "grad_norm": 1.774075984954834,
2317
+ "learning_rate": 1.5721649484536082e-06,
2318
+ "loss": 0.8457,
2319
+ "step": 330
2320
+ },
2321
+ {
2322
+ "epoch": 0.8487179487179487,
2323
+ "grad_norm": 1.8672053813934326,
2324
+ "learning_rate": 1.5463917525773197e-06,
2325
+ "loss": 1.0176,
2326
+ "step": 331
2327
+ },
2328
+ {
2329
+ "epoch": 0.8512820512820513,
2330
+ "grad_norm": 1.5850166082382202,
2331
+ "learning_rate": 1.520618556701031e-06,
2332
+ "loss": 0.6777,
2333
+ "step": 332
2334
+ },
2335
+ {
2336
+ "epoch": 0.8538461538461538,
2337
+ "grad_norm": 1.6745821237564087,
2338
+ "learning_rate": 1.4948453608247423e-06,
2339
+ "loss": 0.939,
2340
+ "step": 333
2341
+ },
2342
+ {
2343
+ "epoch": 0.8564102564102564,
2344
+ "grad_norm": 1.8641244173049927,
2345
+ "learning_rate": 1.4690721649484538e-06,
2346
+ "loss": 1.0,
2347
+ "step": 334
2348
+ },
2349
+ {
2350
+ "epoch": 0.8589743589743589,
2351
+ "grad_norm": 1.6371408700942993,
2352
+ "learning_rate": 1.4432989690721649e-06,
2353
+ "loss": 0.8037,
2354
+ "step": 335
2355
+ },
2356
+ {
2357
+ "epoch": 0.8615384615384616,
2358
+ "grad_norm": 2.0685510635375977,
2359
+ "learning_rate": 1.4175257731958764e-06,
2360
+ "loss": 0.9287,
2361
+ "step": 336
2362
+ },
2363
+ {
2364
+ "epoch": 0.8641025641025641,
2365
+ "grad_norm": 1.8242462873458862,
2366
+ "learning_rate": 1.3917525773195878e-06,
2367
+ "loss": 0.8877,
2368
+ "step": 337
2369
+ },
2370
+ {
2371
+ "epoch": 0.8666666666666667,
2372
+ "grad_norm": 2.243830442428589,
2373
+ "learning_rate": 1.365979381443299e-06,
2374
+ "loss": 0.7764,
2375
+ "step": 338
2376
+ },
2377
+ {
2378
+ "epoch": 0.8692307692307693,
2379
+ "grad_norm": 2.188321590423584,
2380
+ "learning_rate": 1.3402061855670104e-06,
2381
+ "loss": 1.125,
2382
+ "step": 339
2383
+ },
2384
+ {
2385
+ "epoch": 0.8717948717948718,
2386
+ "grad_norm": 2.412721633911133,
2387
+ "learning_rate": 1.314432989690722e-06,
2388
+ "loss": 1.1016,
2389
+ "step": 340
2390
+ },
2391
+ {
2392
+ "epoch": 0.8743589743589744,
2393
+ "grad_norm": 2.149219512939453,
2394
+ "learning_rate": 1.288659793814433e-06,
2395
+ "loss": 1.1104,
2396
+ "step": 341
2397
+ },
2398
+ {
2399
+ "epoch": 0.8769230769230769,
2400
+ "grad_norm": 1.603258490562439,
2401
+ "learning_rate": 1.2628865979381445e-06,
2402
+ "loss": 0.7148,
2403
+ "step": 342
2404
+ },
2405
+ {
2406
+ "epoch": 0.8794871794871795,
2407
+ "grad_norm": 1.7832096815109253,
2408
+ "learning_rate": 1.2371134020618557e-06,
2409
+ "loss": 0.9902,
2410
+ "step": 343
2411
+ },
2412
+ {
2413
+ "epoch": 0.882051282051282,
2414
+ "grad_norm": 1.8631786108016968,
2415
+ "learning_rate": 1.211340206185567e-06,
2416
+ "loss": 0.8569,
2417
+ "step": 344
2418
+ },
2419
+ {
2420
+ "epoch": 0.8846153846153846,
2421
+ "grad_norm": 1.6944712400436401,
2422
+ "learning_rate": 1.1855670103092783e-06,
2423
+ "loss": 0.7397,
2424
+ "step": 345
2425
+ },
2426
+ {
2427
+ "epoch": 0.8871794871794871,
2428
+ "grad_norm": 1.842955231666565,
2429
+ "learning_rate": 1.1597938144329898e-06,
2430
+ "loss": 0.8457,
2431
+ "step": 346
2432
+ },
2433
+ {
2434
+ "epoch": 0.8897435897435897,
2435
+ "grad_norm": 2.5506865978240967,
2436
+ "learning_rate": 1.134020618556701e-06,
2437
+ "loss": 0.9238,
2438
+ "step": 347
2439
+ },
2440
+ {
2441
+ "epoch": 0.8923076923076924,
2442
+ "grad_norm": 2.157381534576416,
2443
+ "learning_rate": 1.1082474226804124e-06,
2444
+ "loss": 1.1855,
2445
+ "step": 348
2446
+ },
2447
+ {
2448
+ "epoch": 0.8948717948717949,
2449
+ "grad_norm": 1.835581660270691,
2450
+ "learning_rate": 1.0824742268041239e-06,
2451
+ "loss": 0.9375,
2452
+ "step": 349
2453
+ },
2454
+ {
2455
+ "epoch": 0.8974358974358975,
2456
+ "grad_norm": 2.591947078704834,
2457
+ "learning_rate": 1.0567010309278351e-06,
2458
+ "loss": 1.0088,
2459
+ "step": 350
2460
+ },
2461
+ {
2462
+ "epoch": 0.9,
2463
+ "grad_norm": 1.9977459907531738,
2464
+ "learning_rate": 1.0309278350515464e-06,
2465
+ "loss": 1.0576,
2466
+ "step": 351
2467
+ },
2468
+ {
2469
+ "epoch": 0.9025641025641026,
2470
+ "grad_norm": 1.7029050588607788,
2471
+ "learning_rate": 1.005154639175258e-06,
2472
+ "loss": 0.8643,
2473
+ "step": 352
2474
+ },
2475
+ {
2476
+ "epoch": 0.9051282051282051,
2477
+ "grad_norm": 1.6559293270111084,
2478
+ "learning_rate": 9.793814432989692e-07,
2479
+ "loss": 0.8652,
2480
+ "step": 353
2481
+ },
2482
+ {
2483
+ "epoch": 0.9076923076923077,
2484
+ "grad_norm": 2.0177323818206787,
2485
+ "learning_rate": 9.536082474226805e-07,
2486
+ "loss": 1.0361,
2487
+ "step": 354
2488
+ },
2489
+ {
2490
+ "epoch": 0.9102564102564102,
2491
+ "grad_norm": 1.6591455936431885,
2492
+ "learning_rate": 9.278350515463919e-07,
2493
+ "loss": 0.8872,
2494
+ "step": 355
2495
+ },
2496
+ {
2497
+ "epoch": 0.9128205128205128,
2498
+ "grad_norm": 2.092712640762329,
2499
+ "learning_rate": 9.020618556701031e-07,
2500
+ "loss": 0.9644,
2501
+ "step": 356
2502
+ },
2503
+ {
2504
+ "epoch": 0.9153846153846154,
2505
+ "grad_norm": 1.7917448282241821,
2506
+ "learning_rate": 8.762886597938144e-07,
2507
+ "loss": 0.9399,
2508
+ "step": 357
2509
+ },
2510
+ {
2511
+ "epoch": 0.9179487179487179,
2512
+ "grad_norm": 1.9611492156982422,
2513
+ "learning_rate": 8.505154639175259e-07,
2514
+ "loss": 1.292,
2515
+ "step": 358
2516
+ },
2517
+ {
2518
+ "epoch": 0.9205128205128205,
2519
+ "grad_norm": 1.7951692342758179,
2520
+ "learning_rate": 8.247422680412372e-07,
2521
+ "loss": 0.9551,
2522
+ "step": 359
2523
+ },
2524
+ {
2525
+ "epoch": 0.9230769230769231,
2526
+ "grad_norm": 1.8831959962844849,
2527
+ "learning_rate": 7.989690721649485e-07,
2528
+ "loss": 1.1973,
2529
+ "step": 360
2530
+ },
2531
+ {
2532
+ "epoch": 0.9256410256410257,
2533
+ "grad_norm": 1.9080712795257568,
2534
+ "learning_rate": 7.731958762886599e-07,
2535
+ "loss": 0.917,
2536
+ "step": 361
2537
+ },
2538
+ {
2539
+ "epoch": 0.9282051282051282,
2540
+ "grad_norm": 2.041674852371216,
2541
+ "learning_rate": 7.474226804123711e-07,
2542
+ "loss": 0.9111,
2543
+ "step": 362
2544
+ },
2545
+ {
2546
+ "epoch": 0.9307692307692308,
2547
+ "grad_norm": 1.8067349195480347,
2548
+ "learning_rate": 7.216494845360824e-07,
2549
+ "loss": 0.7915,
2550
+ "step": 363
2551
+ },
2552
+ {
2553
+ "epoch": 0.9333333333333333,
2554
+ "grad_norm": 1.733258843421936,
2555
+ "learning_rate": 6.958762886597939e-07,
2556
+ "loss": 0.8726,
2557
+ "step": 364
2558
+ },
2559
+ {
2560
+ "epoch": 0.9358974358974359,
2561
+ "grad_norm": 2.1133229732513428,
2562
+ "learning_rate": 6.701030927835052e-07,
2563
+ "loss": 0.9028,
2564
+ "step": 365
2565
+ },
2566
+ {
2567
+ "epoch": 0.9384615384615385,
2568
+ "grad_norm": 1.8070833683013916,
2569
+ "learning_rate": 6.443298969072165e-07,
2570
+ "loss": 0.8071,
2571
+ "step": 366
2572
+ },
2573
+ {
2574
+ "epoch": 0.941025641025641,
2575
+ "grad_norm": 1.610521912574768,
2576
+ "learning_rate": 6.185567010309279e-07,
2577
+ "loss": 0.686,
2578
+ "step": 367
2579
+ },
2580
+ {
2581
+ "epoch": 0.9435897435897436,
2582
+ "grad_norm": 1.8273773193359375,
2583
+ "learning_rate": 5.927835051546392e-07,
2584
+ "loss": 1.042,
2585
+ "step": 368
2586
+ },
2587
+ {
2588
+ "epoch": 0.9461538461538461,
2589
+ "grad_norm": 1.6408607959747314,
2590
+ "learning_rate": 5.670103092783505e-07,
2591
+ "loss": 0.8584,
2592
+ "step": 369
2593
+ },
2594
+ {
2595
+ "epoch": 0.9487179487179487,
2596
+ "grad_norm": 1.950465440750122,
2597
+ "learning_rate": 5.412371134020619e-07,
2598
+ "loss": 0.9629,
2599
+ "step": 370
2600
+ },
2601
+ {
2602
+ "epoch": 0.9512820512820512,
2603
+ "grad_norm": 1.6559863090515137,
2604
+ "learning_rate": 5.154639175257732e-07,
2605
+ "loss": 0.7119,
2606
+ "step": 371
2607
+ },
2608
+ {
2609
+ "epoch": 0.9538461538461539,
2610
+ "grad_norm": 1.497727394104004,
2611
+ "learning_rate": 4.896907216494846e-07,
2612
+ "loss": 0.71,
2613
+ "step": 372
2614
+ },
2615
+ {
2616
+ "epoch": 0.9564102564102565,
2617
+ "grad_norm": 1.7516483068466187,
2618
+ "learning_rate": 4.6391752577319593e-07,
2619
+ "loss": 0.7275,
2620
+ "step": 373
2621
+ },
2622
+ {
2623
+ "epoch": 0.958974358974359,
2624
+ "grad_norm": 1.8231966495513916,
2625
+ "learning_rate": 4.381443298969072e-07,
2626
+ "loss": 1.0664,
2627
+ "step": 374
2628
+ },
2629
+ {
2630
+ "epoch": 0.9615384615384616,
2631
+ "grad_norm": 2.928769826889038,
2632
+ "learning_rate": 4.123711340206186e-07,
2633
+ "loss": 0.7983,
2634
+ "step": 375
2635
+ },
2636
+ {
2637
+ "epoch": 0.9641025641025641,
2638
+ "grad_norm": 1.5636661052703857,
2639
+ "learning_rate": 3.8659793814432993e-07,
2640
+ "loss": 0.6655,
2641
+ "step": 376
2642
+ },
2643
+ {
2644
+ "epoch": 0.9666666666666667,
2645
+ "grad_norm": 1.7315055131912231,
2646
+ "learning_rate": 3.608247422680412e-07,
2647
+ "loss": 0.8994,
2648
+ "step": 377
2649
+ },
2650
+ {
2651
+ "epoch": 0.9692307692307692,
2652
+ "grad_norm": 1.863347053527832,
2653
+ "learning_rate": 3.350515463917526e-07,
2654
+ "loss": 0.9229,
2655
+ "step": 378
2656
+ },
2657
+ {
2658
+ "epoch": 0.9717948717948718,
2659
+ "grad_norm": 1.6344797611236572,
2660
+ "learning_rate": 3.0927835051546394e-07,
2661
+ "loss": 0.915,
2662
+ "step": 379
2663
+ },
2664
+ {
2665
+ "epoch": 0.9743589743589743,
2666
+ "grad_norm": 1.7815521955490112,
2667
+ "learning_rate": 2.8350515463917527e-07,
2668
+ "loss": 1.002,
2669
+ "step": 380
2670
+ },
2671
+ {
2672
+ "epoch": 0.9769230769230769,
2673
+ "grad_norm": 1.689065933227539,
2674
+ "learning_rate": 2.577319587628866e-07,
2675
+ "loss": 0.8452,
2676
+ "step": 381
2677
+ },
2678
+ {
2679
+ "epoch": 0.9794871794871794,
2680
+ "grad_norm": 1.8653761148452759,
2681
+ "learning_rate": 2.3195876288659797e-07,
2682
+ "loss": 0.9282,
2683
+ "step": 382
2684
+ },
2685
+ {
2686
+ "epoch": 0.982051282051282,
2687
+ "grad_norm": 1.7302168607711792,
2688
+ "learning_rate": 2.061855670103093e-07,
2689
+ "loss": 0.6318,
2690
+ "step": 383
2691
+ },
2692
+ {
2693
+ "epoch": 0.9846153846153847,
2694
+ "grad_norm": 1.8644577264785767,
2695
+ "learning_rate": 1.804123711340206e-07,
2696
+ "loss": 0.8018,
2697
+ "step": 384
2698
+ },
2699
+ {
2700
+ "epoch": 0.9871794871794872,
2701
+ "grad_norm": 1.725438117980957,
2702
+ "learning_rate": 1.5463917525773197e-07,
2703
+ "loss": 0.9722,
2704
+ "step": 385
2705
+ },
2706
+ {
2707
+ "epoch": 0.9897435897435898,
2708
+ "grad_norm": 2.536639928817749,
2709
+ "learning_rate": 1.288659793814433e-07,
2710
+ "loss": 1.0117,
2711
+ "step": 386
2712
+ },
2713
+ {
2714
+ "epoch": 0.9923076923076923,
2715
+ "grad_norm": 6.378511905670166,
2716
+ "learning_rate": 1.0309278350515465e-07,
2717
+ "loss": 1.0488,
2718
+ "step": 387
2719
+ },
2720
+ {
2721
+ "epoch": 0.9948717948717949,
2722
+ "grad_norm": 1.8261665105819702,
2723
+ "learning_rate": 7.731958762886598e-08,
2724
+ "loss": 0.9814,
2725
+ "step": 388
2726
+ },
2727
+ {
2728
+ "epoch": 0.9974358974358974,
2729
+ "grad_norm": 1.732452630996704,
2730
+ "learning_rate": 5.1546391752577325e-08,
2731
+ "loss": 0.7505,
2732
+ "step": 389
2733
+ },
2734
+ {
2735
+ "epoch": 1.0,
2736
+ "grad_norm": 1.9269561767578125,
2737
+ "learning_rate": 2.5773195876288662e-08,
2738
+ "loss": 1.0332,
2739
+ "step": 390
2740
+ }
2741
+ ],
2742
+ "logging_steps": 1.0,
2743
+ "max_steps": 390,
2744
+ "num_input_tokens_seen": 0,
2745
+ "num_train_epochs": 1,
2746
+ "save_steps": 1000,
2747
+ "stateful_callbacks": {
2748
+ "TrainerControl": {
2749
+ "args": {
2750
+ "should_epoch_stop": false,
2751
+ "should_evaluate": false,
2752
+ "should_log": false,
2753
+ "should_save": true,
2754
+ "should_training_stop": true
2755
+ },
2756
+ "attributes": {}
2757
+ }
2758
+ },
2759
+ "total_flos": 0.0,
2760
+ "train_batch_size": 1,
2761
+ "trial_name": null,
2762
+ "trial_params": null
2763
+ }
checkpoint-390/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d533dc63a1c358dd5f8c710590b95b45400195b129c56c2217d9b54ba19e8aa
3
+ size 7736
checkpoint-390/zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/share/chaofan/code/IR-Studio-up/online_test/finetune_result/medical_huatuo/retriever_round2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float16",
24
+ "transformers_version": "4.44.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:855b4280f2d306c83c3ecfddf1ddbaae1d9032d4b20f51853faaa0d6a16c0f77
3
+ size 1135554344
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33cd99e33ce09bdd8a6136fddfe90a1c47f85bafedf7309d0eecc19012d43586
3
+ size 17082897
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "max_length": 512,
50
+ "model_max_length": 8192,
51
+ "pad_token": "<pad>",
52
+ "sep_token": "</s>",
53
+ "sp_model_kwargs": {},
54
+ "stride": 0,
55
+ "tokenizer_class": "XLMRobertaTokenizer",
56
+ "truncation_side": "right",
57
+ "truncation_strategy": "longest_first",
58
+ "unk_token": "<unk>"
59
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d533dc63a1c358dd5f8c710590b95b45400195b129c56c2217d9b54ba19e8aa
3
+ size 7736