Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- checkpoint-390/config.json +28 -0
- checkpoint-390/latest +1 -0
- checkpoint-390/model.safetensors +3 -0
- checkpoint-390/rng_state_0.pth +3 -0
- checkpoint-390/rng_state_1.pth +3 -0
- checkpoint-390/rng_state_2.pth +3 -0
- checkpoint-390/rng_state_3.pth +3 -0
- checkpoint-390/rng_state_4.pth +3 -0
- checkpoint-390/rng_state_5.pth +3 -0
- checkpoint-390/rng_state_6.pth +3 -0
- checkpoint-390/rng_state_7.pth +3 -0
- checkpoint-390/sentencepiece.bpe.model +3 -0
- checkpoint-390/special_tokens_map.json +51 -0
- checkpoint-390/tokenizer.json +3 -0
- checkpoint-390/tokenizer_config.json +59 -0
- checkpoint-390/trainer_state.json +2763 -0
- checkpoint-390/training_args.bin +3 -0
- checkpoint-390/zero_to_fp32.py +604 -0
- config.json +28 -0
- model.safetensors +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +59 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
checkpoint-390/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
checkpoint-390/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/share/chaofan/code/IR-Studio-up/online_test/finetune_result/medical_huatuo/retriever_round2",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float16",
|
24 |
+
"transformers_version": "4.44.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
checkpoint-390/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step390
|
checkpoint-390/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:855b4280f2d306c83c3ecfddf1ddbaae1d9032d4b20f51853faaa0d6a16c0f77
|
3 |
+
size 1135554344
|
checkpoint-390/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d450ca4e8a4d23fa4a961f741ce98adf42ebc214a8d43159f209a432e702f2bb
|
3 |
+
size 15920
|
checkpoint-390/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5aefb075d1611d454cce415a89a3e8758a14668167e62ee223c940f18466f91
|
3 |
+
size 15920
|
checkpoint-390/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dcbfd1b600592bb0373238657fc34e638f3e5ebb520ba7db76f02c937d90106
|
3 |
+
size 15920
|
checkpoint-390/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:296318f56f3d5adaa653c100d65f4bb29d9606f913baf047f89d721e68fd1569
|
3 |
+
size 15920
|
checkpoint-390/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc3c7b79f449b60a26fd9e32b3de05b3ee74517ca49e3df6c65fbbc771a17468
|
3 |
+
size 15920
|
checkpoint-390/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e53f54f8a626791d2d224a0053ec939ecf47b34d107fa7ae18122ca133a03eba
|
3 |
+
size 15920
|
checkpoint-390/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e38621271f3c4435c03fbc26b4480a7e4696df44d864f711718dd711df370c0
|
3 |
+
size 15920
|
checkpoint-390/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dc421f4a40233aeeabdf5e226ccd9b8cc265fb6c63945e94ce3b532cb661f5a
|
3 |
+
size 15920
|
checkpoint-390/sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
checkpoint-390/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
checkpoint-390/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33cd99e33ce09bdd8a6136fddfe90a1c47f85bafedf7309d0eecc19012d43586
|
3 |
+
size 17082897
|
checkpoint-390/tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 8192,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"stride": 0,
|
55 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
56 |
+
"truncation_side": "right",
|
57 |
+
"truncation_strategy": "longest_first",
|
58 |
+
"unk_token": "<unk>"
|
59 |
+
}
|
checkpoint-390/trainer_state.json
ADDED
@@ -0,0 +1,2763 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 390,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.002564102564102564,
|
13 |
+
"grad_norm": 1.828752040863037,
|
14 |
+
"learning_rate": 0.0,
|
15 |
+
"loss": 1.0674,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.005128205128205128,
|
20 |
+
"grad_norm": 2.0600810050964355,
|
21 |
+
"learning_rate": 1e-05,
|
22 |
+
"loss": 1.0127,
|
23 |
+
"step": 2
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.007692307692307693,
|
27 |
+
"grad_norm": 1.7609747648239136,
|
28 |
+
"learning_rate": 1e-05,
|
29 |
+
"loss": 0.8945,
|
30 |
+
"step": 3
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.010256410256410256,
|
34 |
+
"grad_norm": 2.0786192417144775,
|
35 |
+
"learning_rate": 9.974226804123713e-06,
|
36 |
+
"loss": 1.0947,
|
37 |
+
"step": 4
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.01282051282051282,
|
41 |
+
"grad_norm": 1.8740049600601196,
|
42 |
+
"learning_rate": 9.948453608247423e-06,
|
43 |
+
"loss": 1.0859,
|
44 |
+
"step": 5
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.015384615384615385,
|
48 |
+
"grad_norm": 1.8995977640151978,
|
49 |
+
"learning_rate": 9.922680412371136e-06,
|
50 |
+
"loss": 0.9326,
|
51 |
+
"step": 6
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.017948717948717947,
|
55 |
+
"grad_norm": 1.807106375694275,
|
56 |
+
"learning_rate": 9.896907216494846e-06,
|
57 |
+
"loss": 0.9839,
|
58 |
+
"step": 7
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.020512820512820513,
|
62 |
+
"grad_norm": 2.0719048976898193,
|
63 |
+
"learning_rate": 9.871134020618558e-06,
|
64 |
+
"loss": 1.1914,
|
65 |
+
"step": 8
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.023076923076923078,
|
69 |
+
"grad_norm": 1.714697241783142,
|
70 |
+
"learning_rate": 9.84536082474227e-06,
|
71 |
+
"loss": 0.9263,
|
72 |
+
"step": 9
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.02564102564102564,
|
76 |
+
"grad_norm": 1.7930278778076172,
|
77 |
+
"learning_rate": 9.819587628865979e-06,
|
78 |
+
"loss": 0.9546,
|
79 |
+
"step": 10
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.028205128205128206,
|
83 |
+
"grad_norm": 1.8702346086502075,
|
84 |
+
"learning_rate": 9.793814432989691e-06,
|
85 |
+
"loss": 1.0645,
|
86 |
+
"step": 11
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.03076923076923077,
|
90 |
+
"grad_norm": 1.7376536130905151,
|
91 |
+
"learning_rate": 9.768041237113403e-06,
|
92 |
+
"loss": 1.0166,
|
93 |
+
"step": 12
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.03333333333333333,
|
97 |
+
"grad_norm": 1.804457426071167,
|
98 |
+
"learning_rate": 9.742268041237114e-06,
|
99 |
+
"loss": 0.8545,
|
100 |
+
"step": 13
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.035897435897435895,
|
104 |
+
"grad_norm": 1.8418951034545898,
|
105 |
+
"learning_rate": 9.716494845360826e-06,
|
106 |
+
"loss": 1.1855,
|
107 |
+
"step": 14
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.038461538461538464,
|
111 |
+
"grad_norm": 3.295741558074951,
|
112 |
+
"learning_rate": 9.690721649484536e-06,
|
113 |
+
"loss": 1.1631,
|
114 |
+
"step": 15
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.041025641025641026,
|
118 |
+
"grad_norm": 2.6767563819885254,
|
119 |
+
"learning_rate": 9.664948453608248e-06,
|
120 |
+
"loss": 1.0205,
|
121 |
+
"step": 16
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.04358974358974359,
|
125 |
+
"grad_norm": 2.088998556137085,
|
126 |
+
"learning_rate": 9.63917525773196e-06,
|
127 |
+
"loss": 0.9512,
|
128 |
+
"step": 17
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.046153846153846156,
|
132 |
+
"grad_norm": 3.8526885509490967,
|
133 |
+
"learning_rate": 9.613402061855671e-06,
|
134 |
+
"loss": 1.2227,
|
135 |
+
"step": 18
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.04871794871794872,
|
139 |
+
"grad_norm": 2.5801403522491455,
|
140 |
+
"learning_rate": 9.587628865979383e-06,
|
141 |
+
"loss": 0.9424,
|
142 |
+
"step": 19
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.05128205128205128,
|
146 |
+
"grad_norm": 2.2087137699127197,
|
147 |
+
"learning_rate": 9.561855670103093e-06,
|
148 |
+
"loss": 1.3262,
|
149 |
+
"step": 20
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.05384615384615385,
|
153 |
+
"grad_norm": 1.9106372594833374,
|
154 |
+
"learning_rate": 9.536082474226806e-06,
|
155 |
+
"loss": 0.9004,
|
156 |
+
"step": 21
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.05641025641025641,
|
160 |
+
"grad_norm": 1.7588039636611938,
|
161 |
+
"learning_rate": 9.510309278350516e-06,
|
162 |
+
"loss": 0.9482,
|
163 |
+
"step": 22
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.05897435897435897,
|
167 |
+
"grad_norm": 2.0292000770568848,
|
168 |
+
"learning_rate": 9.484536082474226e-06,
|
169 |
+
"loss": 1.0371,
|
170 |
+
"step": 23
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.06153846153846154,
|
174 |
+
"grad_norm": 1.8534419536590576,
|
175 |
+
"learning_rate": 9.458762886597939e-06,
|
176 |
+
"loss": 1.0303,
|
177 |
+
"step": 24
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.0641025641025641,
|
181 |
+
"grad_norm": 2.4608726501464844,
|
182 |
+
"learning_rate": 9.43298969072165e-06,
|
183 |
+
"loss": 1.4395,
|
184 |
+
"step": 25
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.06666666666666667,
|
188 |
+
"grad_norm": 2.119417905807495,
|
189 |
+
"learning_rate": 9.407216494845361e-06,
|
190 |
+
"loss": 1.1143,
|
191 |
+
"step": 26
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.06923076923076923,
|
195 |
+
"grad_norm": 2.145531177520752,
|
196 |
+
"learning_rate": 9.381443298969073e-06,
|
197 |
+
"loss": 0.9443,
|
198 |
+
"step": 27
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.07179487179487179,
|
202 |
+
"grad_norm": 4.710203170776367,
|
203 |
+
"learning_rate": 9.355670103092784e-06,
|
204 |
+
"loss": 1.3311,
|
205 |
+
"step": 28
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.07435897435897436,
|
209 |
+
"grad_norm": 3.2553186416625977,
|
210 |
+
"learning_rate": 9.329896907216496e-06,
|
211 |
+
"loss": 1.123,
|
212 |
+
"step": 29
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.07692307692307693,
|
216 |
+
"grad_norm": 2.38273024559021,
|
217 |
+
"learning_rate": 9.304123711340208e-06,
|
218 |
+
"loss": 1.124,
|
219 |
+
"step": 30
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.07948717948717948,
|
223 |
+
"grad_norm": 3.6473400592803955,
|
224 |
+
"learning_rate": 9.278350515463918e-06,
|
225 |
+
"loss": 1.2568,
|
226 |
+
"step": 31
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.08205128205128205,
|
230 |
+
"grad_norm": 2.2762739658355713,
|
231 |
+
"learning_rate": 9.25257731958763e-06,
|
232 |
+
"loss": 1.0898,
|
233 |
+
"step": 32
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.08461538461538462,
|
237 |
+
"grad_norm": 1.870347499847412,
|
238 |
+
"learning_rate": 9.226804123711341e-06,
|
239 |
+
"loss": 0.8887,
|
240 |
+
"step": 33
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.08717948717948718,
|
244 |
+
"grad_norm": 3.9631059169769287,
|
245 |
+
"learning_rate": 9.201030927835051e-06,
|
246 |
+
"loss": 0.937,
|
247 |
+
"step": 34
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.08974358974358974,
|
251 |
+
"grad_norm": 2.2279770374298096,
|
252 |
+
"learning_rate": 9.175257731958764e-06,
|
253 |
+
"loss": 0.9785,
|
254 |
+
"step": 35
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.09230769230769231,
|
258 |
+
"grad_norm": 2.2554802894592285,
|
259 |
+
"learning_rate": 9.149484536082474e-06,
|
260 |
+
"loss": 1.0762,
|
261 |
+
"step": 36
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.09487179487179487,
|
265 |
+
"grad_norm": 2.188344955444336,
|
266 |
+
"learning_rate": 9.123711340206186e-06,
|
267 |
+
"loss": 1.1318,
|
268 |
+
"step": 37
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.09743589743589744,
|
272 |
+
"grad_norm": 2.1649510860443115,
|
273 |
+
"learning_rate": 9.097938144329898e-06,
|
274 |
+
"loss": 0.7827,
|
275 |
+
"step": 38
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.1,
|
279 |
+
"grad_norm": 2.4596219062805176,
|
280 |
+
"learning_rate": 9.072164948453609e-06,
|
281 |
+
"loss": 0.8247,
|
282 |
+
"step": 39
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.10256410256410256,
|
286 |
+
"grad_norm": 2.487870931625366,
|
287 |
+
"learning_rate": 9.04639175257732e-06,
|
288 |
+
"loss": 1.0635,
|
289 |
+
"step": 40
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.10512820512820513,
|
293 |
+
"grad_norm": 1.9071369171142578,
|
294 |
+
"learning_rate": 9.020618556701031e-06,
|
295 |
+
"loss": 0.9946,
|
296 |
+
"step": 41
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.1076923076923077,
|
300 |
+
"grad_norm": 2.219597101211548,
|
301 |
+
"learning_rate": 8.994845360824743e-06,
|
302 |
+
"loss": 1.1309,
|
303 |
+
"step": 42
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.11025641025641025,
|
307 |
+
"grad_norm": 2.2724695205688477,
|
308 |
+
"learning_rate": 8.969072164948455e-06,
|
309 |
+
"loss": 1.2637,
|
310 |
+
"step": 43
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.11282051282051282,
|
314 |
+
"grad_norm": 2.331315755844116,
|
315 |
+
"learning_rate": 8.943298969072166e-06,
|
316 |
+
"loss": 1.1611,
|
317 |
+
"step": 44
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.11538461538461539,
|
321 |
+
"grad_norm": 2.036611318588257,
|
322 |
+
"learning_rate": 8.917525773195878e-06,
|
323 |
+
"loss": 0.9233,
|
324 |
+
"step": 45
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.11794871794871795,
|
328 |
+
"grad_norm": 1.9779893159866333,
|
329 |
+
"learning_rate": 8.891752577319588e-06,
|
330 |
+
"loss": 0.8071,
|
331 |
+
"step": 46
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.12051282051282051,
|
335 |
+
"grad_norm": 2.511869192123413,
|
336 |
+
"learning_rate": 8.865979381443299e-06,
|
337 |
+
"loss": 0.9165,
|
338 |
+
"step": 47
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.12307692307692308,
|
342 |
+
"grad_norm": 1.9824575185775757,
|
343 |
+
"learning_rate": 8.840206185567011e-06,
|
344 |
+
"loss": 0.9712,
|
345 |
+
"step": 48
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.12564102564102564,
|
349 |
+
"grad_norm": 2.224874973297119,
|
350 |
+
"learning_rate": 8.814432989690721e-06,
|
351 |
+
"loss": 0.8857,
|
352 |
+
"step": 49
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.1282051282051282,
|
356 |
+
"grad_norm": 2.290484666824341,
|
357 |
+
"learning_rate": 8.788659793814434e-06,
|
358 |
+
"loss": 1.0908,
|
359 |
+
"step": 50
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.13076923076923078,
|
363 |
+
"grad_norm": 2.009584903717041,
|
364 |
+
"learning_rate": 8.762886597938146e-06,
|
365 |
+
"loss": 0.833,
|
366 |
+
"step": 51
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.13333333333333333,
|
370 |
+
"grad_norm": 4.70264196395874,
|
371 |
+
"learning_rate": 8.737113402061856e-06,
|
372 |
+
"loss": 0.998,
|
373 |
+
"step": 52
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.1358974358974359,
|
377 |
+
"grad_norm": 3.110806465148926,
|
378 |
+
"learning_rate": 8.711340206185568e-06,
|
379 |
+
"loss": 0.9189,
|
380 |
+
"step": 53
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.13846153846153847,
|
384 |
+
"grad_norm": 1.902529239654541,
|
385 |
+
"learning_rate": 8.685567010309279e-06,
|
386 |
+
"loss": 1.0293,
|
387 |
+
"step": 54
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.14102564102564102,
|
391 |
+
"grad_norm": 2.1648287773132324,
|
392 |
+
"learning_rate": 8.65979381443299e-06,
|
393 |
+
"loss": 1.0488,
|
394 |
+
"step": 55
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.14358974358974358,
|
398 |
+
"grad_norm": 1.7489367723464966,
|
399 |
+
"learning_rate": 8.634020618556703e-06,
|
400 |
+
"loss": 0.8091,
|
401 |
+
"step": 56
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.14615384615384616,
|
405 |
+
"grad_norm": 1.9431246519088745,
|
406 |
+
"learning_rate": 8.608247422680413e-06,
|
407 |
+
"loss": 1.0049,
|
408 |
+
"step": 57
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.14871794871794872,
|
412 |
+
"grad_norm": 2.2493724822998047,
|
413 |
+
"learning_rate": 8.582474226804124e-06,
|
414 |
+
"loss": 0.9321,
|
415 |
+
"step": 58
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.15128205128205127,
|
419 |
+
"grad_norm": 2.1866893768310547,
|
420 |
+
"learning_rate": 8.556701030927836e-06,
|
421 |
+
"loss": 1.2656,
|
422 |
+
"step": 59
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.15384615384615385,
|
426 |
+
"grad_norm": 2.024313449859619,
|
427 |
+
"learning_rate": 8.530927835051546e-06,
|
428 |
+
"loss": 1.0801,
|
429 |
+
"step": 60
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.1564102564102564,
|
433 |
+
"grad_norm": 1.77311110496521,
|
434 |
+
"learning_rate": 8.505154639175259e-06,
|
435 |
+
"loss": 0.9946,
|
436 |
+
"step": 61
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.15897435897435896,
|
440 |
+
"grad_norm": 1.6627540588378906,
|
441 |
+
"learning_rate": 8.479381443298969e-06,
|
442 |
+
"loss": 0.9702,
|
443 |
+
"step": 62
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.16153846153846155,
|
447 |
+
"grad_norm": 1.9997308254241943,
|
448 |
+
"learning_rate": 8.453608247422681e-06,
|
449 |
+
"loss": 0.9487,
|
450 |
+
"step": 63
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.1641025641025641,
|
454 |
+
"grad_norm": 1.6049851179122925,
|
455 |
+
"learning_rate": 8.427835051546393e-06,
|
456 |
+
"loss": 0.9512,
|
457 |
+
"step": 64
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.16666666666666666,
|
461 |
+
"grad_norm": 1.8791325092315674,
|
462 |
+
"learning_rate": 8.402061855670104e-06,
|
463 |
+
"loss": 0.9355,
|
464 |
+
"step": 65
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.16923076923076924,
|
468 |
+
"grad_norm": 2.173393964767456,
|
469 |
+
"learning_rate": 8.376288659793816e-06,
|
470 |
+
"loss": 1.1992,
|
471 |
+
"step": 66
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.1717948717948718,
|
475 |
+
"grad_norm": 2.0367043018341064,
|
476 |
+
"learning_rate": 8.350515463917526e-06,
|
477 |
+
"loss": 1.1426,
|
478 |
+
"step": 67
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.17435897435897435,
|
482 |
+
"grad_norm": 1.7792794704437256,
|
483 |
+
"learning_rate": 8.324742268041238e-06,
|
484 |
+
"loss": 0.9097,
|
485 |
+
"step": 68
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.17692307692307693,
|
489 |
+
"grad_norm": 1.9103853702545166,
|
490 |
+
"learning_rate": 8.29896907216495e-06,
|
491 |
+
"loss": 1.0225,
|
492 |
+
"step": 69
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.1794871794871795,
|
496 |
+
"grad_norm": 2.0614025592803955,
|
497 |
+
"learning_rate": 8.27319587628866e-06,
|
498 |
+
"loss": 1.2012,
|
499 |
+
"step": 70
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.18205128205128204,
|
503 |
+
"grad_norm": 1.5830662250518799,
|
504 |
+
"learning_rate": 8.247422680412371e-06,
|
505 |
+
"loss": 0.7656,
|
506 |
+
"step": 71
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.18461538461538463,
|
510 |
+
"grad_norm": 1.8411104679107666,
|
511 |
+
"learning_rate": 8.221649484536083e-06,
|
512 |
+
"loss": 1.1162,
|
513 |
+
"step": 72
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.18717948717948718,
|
517 |
+
"grad_norm": 1.954744815826416,
|
518 |
+
"learning_rate": 8.195876288659794e-06,
|
519 |
+
"loss": 1.2031,
|
520 |
+
"step": 73
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.18974358974358974,
|
524 |
+
"grad_norm": 2.1274709701538086,
|
525 |
+
"learning_rate": 8.170103092783506e-06,
|
526 |
+
"loss": 1.1641,
|
527 |
+
"step": 74
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.19230769230769232,
|
531 |
+
"grad_norm": 1.8388986587524414,
|
532 |
+
"learning_rate": 8.144329896907216e-06,
|
533 |
+
"loss": 0.9517,
|
534 |
+
"step": 75
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 0.19487179487179487,
|
538 |
+
"grad_norm": 2.0911478996276855,
|
539 |
+
"learning_rate": 8.118556701030929e-06,
|
540 |
+
"loss": 1.0801,
|
541 |
+
"step": 76
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 0.19743589743589743,
|
545 |
+
"grad_norm": 1.9565143585205078,
|
546 |
+
"learning_rate": 8.09278350515464e-06,
|
547 |
+
"loss": 0.9478,
|
548 |
+
"step": 77
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.2,
|
552 |
+
"grad_norm": 1.8666242361068726,
|
553 |
+
"learning_rate": 8.067010309278351e-06,
|
554 |
+
"loss": 1.3125,
|
555 |
+
"step": 78
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 0.20256410256410257,
|
559 |
+
"grad_norm": 1.9826719760894775,
|
560 |
+
"learning_rate": 8.041237113402063e-06,
|
561 |
+
"loss": 0.9492,
|
562 |
+
"step": 79
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 0.20512820512820512,
|
566 |
+
"grad_norm": 2.062222719192505,
|
567 |
+
"learning_rate": 8.015463917525774e-06,
|
568 |
+
"loss": 1.0195,
|
569 |
+
"step": 80
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 0.2076923076923077,
|
573 |
+
"grad_norm": 2.2730824947357178,
|
574 |
+
"learning_rate": 7.989690721649486e-06,
|
575 |
+
"loss": 0.9248,
|
576 |
+
"step": 81
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.21025641025641026,
|
580 |
+
"grad_norm": 3.432387113571167,
|
581 |
+
"learning_rate": 7.963917525773196e-06,
|
582 |
+
"loss": 0.9678,
|
583 |
+
"step": 82
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.2128205128205128,
|
587 |
+
"grad_norm": 2.1514482498168945,
|
588 |
+
"learning_rate": 7.938144329896907e-06,
|
589 |
+
"loss": 0.7881,
|
590 |
+
"step": 83
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.2153846153846154,
|
594 |
+
"grad_norm": 1.6954137086868286,
|
595 |
+
"learning_rate": 7.912371134020619e-06,
|
596 |
+
"loss": 0.8833,
|
597 |
+
"step": 84
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.21794871794871795,
|
601 |
+
"grad_norm": 1.9222341775894165,
|
602 |
+
"learning_rate": 7.886597938144331e-06,
|
603 |
+
"loss": 0.9917,
|
604 |
+
"step": 85
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 0.2205128205128205,
|
608 |
+
"grad_norm": 1.9066567420959473,
|
609 |
+
"learning_rate": 7.860824742268041e-06,
|
610 |
+
"loss": 0.9507,
|
611 |
+
"step": 86
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 0.2230769230769231,
|
615 |
+
"grad_norm": 1.9370355606079102,
|
616 |
+
"learning_rate": 7.835051546391754e-06,
|
617 |
+
"loss": 0.9814,
|
618 |
+
"step": 87
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 0.22564102564102564,
|
622 |
+
"grad_norm": 1.8217931985855103,
|
623 |
+
"learning_rate": 7.809278350515464e-06,
|
624 |
+
"loss": 1.0186,
|
625 |
+
"step": 88
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 0.2282051282051282,
|
629 |
+
"grad_norm": 1.6907788515090942,
|
630 |
+
"learning_rate": 7.783505154639176e-06,
|
631 |
+
"loss": 0.9624,
|
632 |
+
"step": 89
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.23076923076923078,
|
636 |
+
"grad_norm": 1.6538673639297485,
|
637 |
+
"learning_rate": 7.757731958762888e-06,
|
638 |
+
"loss": 0.8237,
|
639 |
+
"step": 90
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.23333333333333334,
|
643 |
+
"grad_norm": 1.9128988981246948,
|
644 |
+
"learning_rate": 7.731958762886599e-06,
|
645 |
+
"loss": 0.9175,
|
646 |
+
"step": 91
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.2358974358974359,
|
650 |
+
"grad_norm": 3.1747217178344727,
|
651 |
+
"learning_rate": 7.70618556701031e-06,
|
652 |
+
"loss": 0.9775,
|
653 |
+
"step": 92
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 0.23846153846153847,
|
657 |
+
"grad_norm": 1.6946772336959839,
|
658 |
+
"learning_rate": 7.680412371134021e-06,
|
659 |
+
"loss": 0.8823,
|
660 |
+
"step": 93
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 0.24102564102564103,
|
664 |
+
"grad_norm": 2.1718826293945312,
|
665 |
+
"learning_rate": 7.654639175257732e-06,
|
666 |
+
"loss": 1.1543,
|
667 |
+
"step": 94
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 0.24358974358974358,
|
671 |
+
"grad_norm": 2.0842125415802,
|
672 |
+
"learning_rate": 7.628865979381444e-06,
|
673 |
+
"loss": 0.9058,
|
674 |
+
"step": 95
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.24615384615384617,
|
678 |
+
"grad_norm": 1.8005638122558594,
|
679 |
+
"learning_rate": 7.603092783505155e-06,
|
680 |
+
"loss": 0.9146,
|
681 |
+
"step": 96
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.24871794871794872,
|
685 |
+
"grad_norm": 1.6228526830673218,
|
686 |
+
"learning_rate": 7.577319587628866e-06,
|
687 |
+
"loss": 0.7095,
|
688 |
+
"step": 97
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.2512820512820513,
|
692 |
+
"grad_norm": 2.022739887237549,
|
693 |
+
"learning_rate": 7.551546391752578e-06,
|
694 |
+
"loss": 0.9229,
|
695 |
+
"step": 98
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.25384615384615383,
|
699 |
+
"grad_norm": 1.7935630083084106,
|
700 |
+
"learning_rate": 7.525773195876289e-06,
|
701 |
+
"loss": 0.7896,
|
702 |
+
"step": 99
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.2564102564102564,
|
706 |
+
"grad_norm": 1.747321367263794,
|
707 |
+
"learning_rate": 7.500000000000001e-06,
|
708 |
+
"loss": 0.9551,
|
709 |
+
"step": 100
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 0.258974358974359,
|
713 |
+
"grad_norm": 1.8076218366622925,
|
714 |
+
"learning_rate": 7.474226804123712e-06,
|
715 |
+
"loss": 0.8394,
|
716 |
+
"step": 101
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.26153846153846155,
|
720 |
+
"grad_norm": 1.730443000793457,
|
721 |
+
"learning_rate": 7.448453608247424e-06,
|
722 |
+
"loss": 0.9062,
|
723 |
+
"step": 102
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 0.2641025641025641,
|
727 |
+
"grad_norm": 2.290266275405884,
|
728 |
+
"learning_rate": 7.422680412371135e-06,
|
729 |
+
"loss": 1.248,
|
730 |
+
"step": 103
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.26666666666666666,
|
734 |
+
"grad_norm": 1.772620677947998,
|
735 |
+
"learning_rate": 7.396907216494846e-06,
|
736 |
+
"loss": 0.8296,
|
737 |
+
"step": 104
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.2692307692307692,
|
741 |
+
"grad_norm": 1.7270923852920532,
|
742 |
+
"learning_rate": 7.3711340206185574e-06,
|
743 |
+
"loss": 0.8735,
|
744 |
+
"step": 105
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 0.2717948717948718,
|
748 |
+
"grad_norm": 3.0547115802764893,
|
749 |
+
"learning_rate": 7.3453608247422696e-06,
|
750 |
+
"loss": 0.9385,
|
751 |
+
"step": 106
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 0.2743589743589744,
|
755 |
+
"grad_norm": 2.1224873065948486,
|
756 |
+
"learning_rate": 7.319587628865979e-06,
|
757 |
+
"loss": 1.0918,
|
758 |
+
"step": 107
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.27692307692307694,
|
762 |
+
"grad_norm": 2.175182819366455,
|
763 |
+
"learning_rate": 7.293814432989691e-06,
|
764 |
+
"loss": 0.9707,
|
765 |
+
"step": 108
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.2794871794871795,
|
769 |
+
"grad_norm": 1.8396246433258057,
|
770 |
+
"learning_rate": 7.2680412371134026e-06,
|
771 |
+
"loss": 0.9609,
|
772 |
+
"step": 109
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"epoch": 0.28205128205128205,
|
776 |
+
"grad_norm": 1.8551801443099976,
|
777 |
+
"learning_rate": 7.242268041237114e-06,
|
778 |
+
"loss": 0.8916,
|
779 |
+
"step": 110
|
780 |
+
},
|
781 |
+
{
|
782 |
+
"epoch": 0.2846153846153846,
|
783 |
+
"grad_norm": 1.960680603981018,
|
784 |
+
"learning_rate": 7.216494845360825e-06,
|
785 |
+
"loss": 1.0352,
|
786 |
+
"step": 111
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.28717948717948716,
|
790 |
+
"grad_norm": 1.8434001207351685,
|
791 |
+
"learning_rate": 7.190721649484536e-06,
|
792 |
+
"loss": 1.0576,
|
793 |
+
"step": 112
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.28974358974358977,
|
797 |
+
"grad_norm": 2.5577752590179443,
|
798 |
+
"learning_rate": 7.164948453608248e-06,
|
799 |
+
"loss": 1.0762,
|
800 |
+
"step": 113
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.2923076923076923,
|
804 |
+
"grad_norm": 1.8725932836532593,
|
805 |
+
"learning_rate": 7.13917525773196e-06,
|
806 |
+
"loss": 0.79,
|
807 |
+
"step": 114
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 0.2948717948717949,
|
811 |
+
"grad_norm": 2.0246224403381348,
|
812 |
+
"learning_rate": 7.113402061855671e-06,
|
813 |
+
"loss": 0.9058,
|
814 |
+
"step": 115
|
815 |
+
},
|
816 |
+
{
|
817 |
+
"epoch": 0.29743589743589743,
|
818 |
+
"grad_norm": 1.8787579536437988,
|
819 |
+
"learning_rate": 7.087628865979382e-06,
|
820 |
+
"loss": 0.8569,
|
821 |
+
"step": 116
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.3,
|
825 |
+
"grad_norm": 1.6573154926300049,
|
826 |
+
"learning_rate": 7.061855670103094e-06,
|
827 |
+
"loss": 0.8091,
|
828 |
+
"step": 117
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.30256410256410254,
|
832 |
+
"grad_norm": 1.7937979698181152,
|
833 |
+
"learning_rate": 7.036082474226805e-06,
|
834 |
+
"loss": 0.978,
|
835 |
+
"step": 118
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"epoch": 0.30512820512820515,
|
839 |
+
"grad_norm": 1.9054224491119385,
|
840 |
+
"learning_rate": 7.010309278350515e-06,
|
841 |
+
"loss": 1.0635,
|
842 |
+
"step": 119
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.3076923076923077,
|
846 |
+
"grad_norm": 1.6725414991378784,
|
847 |
+
"learning_rate": 6.984536082474227e-06,
|
848 |
+
"loss": 1.0312,
|
849 |
+
"step": 120
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.31025641025641026,
|
853 |
+
"grad_norm": 1.8967286348342896,
|
854 |
+
"learning_rate": 6.958762886597939e-06,
|
855 |
+
"loss": 0.9746,
|
856 |
+
"step": 121
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"epoch": 0.3128205128205128,
|
860 |
+
"grad_norm": 2.158597230911255,
|
861 |
+
"learning_rate": 6.93298969072165e-06,
|
862 |
+
"loss": 1.1309,
|
863 |
+
"step": 122
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"epoch": 0.3153846153846154,
|
867 |
+
"grad_norm": 2.2662479877471924,
|
868 |
+
"learning_rate": 6.907216494845361e-06,
|
869 |
+
"loss": 1.0674,
|
870 |
+
"step": 123
|
871 |
+
},
|
872 |
+
{
|
873 |
+
"epoch": 0.31794871794871793,
|
874 |
+
"grad_norm": 1.9628630876541138,
|
875 |
+
"learning_rate": 6.881443298969073e-06,
|
876 |
+
"loss": 0.9644,
|
877 |
+
"step": 124
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"epoch": 0.32051282051282054,
|
881 |
+
"grad_norm": 1.7974278926849365,
|
882 |
+
"learning_rate": 6.855670103092784e-06,
|
883 |
+
"loss": 0.8877,
|
884 |
+
"step": 125
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.3230769230769231,
|
888 |
+
"grad_norm": 1.7548365592956543,
|
889 |
+
"learning_rate": 6.829896907216495e-06,
|
890 |
+
"loss": 0.9204,
|
891 |
+
"step": 126
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.32564102564102565,
|
895 |
+
"grad_norm": 1.9516572952270508,
|
896 |
+
"learning_rate": 6.804123711340207e-06,
|
897 |
+
"loss": 1.1602,
|
898 |
+
"step": 127
|
899 |
+
},
|
900 |
+
{
|
901 |
+
"epoch": 0.3282051282051282,
|
902 |
+
"grad_norm": 2.1989433765411377,
|
903 |
+
"learning_rate": 6.778350515463919e-06,
|
904 |
+
"loss": 1.1133,
|
905 |
+
"step": 128
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.33076923076923076,
|
909 |
+
"grad_norm": 1.800710916519165,
|
910 |
+
"learning_rate": 6.75257731958763e-06,
|
911 |
+
"loss": 0.791,
|
912 |
+
"step": 129
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.3333333333333333,
|
916 |
+
"grad_norm": 3.385741710662842,
|
917 |
+
"learning_rate": 6.726804123711341e-06,
|
918 |
+
"loss": 1.1758,
|
919 |
+
"step": 130
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"epoch": 0.33589743589743587,
|
923 |
+
"grad_norm": 2.0922465324401855,
|
924 |
+
"learning_rate": 6.701030927835052e-06,
|
925 |
+
"loss": 0.9214,
|
926 |
+
"step": 131
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.3384615384615385,
|
930 |
+
"grad_norm": 1.573805332183838,
|
931 |
+
"learning_rate": 6.675257731958763e-06,
|
932 |
+
"loss": 0.7715,
|
933 |
+
"step": 132
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 0.34102564102564104,
|
937 |
+
"grad_norm": 1.7901231050491333,
|
938 |
+
"learning_rate": 6.649484536082474e-06,
|
939 |
+
"loss": 0.9443,
|
940 |
+
"step": 133
|
941 |
+
},
|
942 |
+
{
|
943 |
+
"epoch": 0.3435897435897436,
|
944 |
+
"grad_norm": 1.6376028060913086,
|
945 |
+
"learning_rate": 6.623711340206186e-06,
|
946 |
+
"loss": 0.9854,
|
947 |
+
"step": 134
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.34615384615384615,
|
951 |
+
"grad_norm": 2.0153403282165527,
|
952 |
+
"learning_rate": 6.597938144329898e-06,
|
953 |
+
"loss": 1.2373,
|
954 |
+
"step": 135
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.3487179487179487,
|
958 |
+
"grad_norm": 1.819011926651001,
|
959 |
+
"learning_rate": 6.572164948453609e-06,
|
960 |
+
"loss": 0.9048,
|
961 |
+
"step": 136
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.35128205128205126,
|
965 |
+
"grad_norm": 1.623148798942566,
|
966 |
+
"learning_rate": 6.54639175257732e-06,
|
967 |
+
"loss": 0.8262,
|
968 |
+
"step": 137
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.35384615384615387,
|
972 |
+
"grad_norm": 2.2499585151672363,
|
973 |
+
"learning_rate": 6.520618556701031e-06,
|
974 |
+
"loss": 1.1152,
|
975 |
+
"step": 138
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.3564102564102564,
|
979 |
+
"grad_norm": 1.9235867261886597,
|
980 |
+
"learning_rate": 6.494845360824743e-06,
|
981 |
+
"loss": 0.9067,
|
982 |
+
"step": 139
|
983 |
+
},
|
984 |
+
{
|
985 |
+
"epoch": 0.358974358974359,
|
986 |
+
"grad_norm": 1.9163473844528198,
|
987 |
+
"learning_rate": 6.469072164948455e-06,
|
988 |
+
"loss": 1.0469,
|
989 |
+
"step": 140
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 0.36153846153846153,
|
993 |
+
"grad_norm": 2.092963457107544,
|
994 |
+
"learning_rate": 6.443298969072166e-06,
|
995 |
+
"loss": 1.0352,
|
996 |
+
"step": 141
|
997 |
+
},
|
998 |
+
{
|
999 |
+
"epoch": 0.3641025641025641,
|
1000 |
+
"grad_norm": 9.061576843261719,
|
1001 |
+
"learning_rate": 6.417525773195877e-06,
|
1002 |
+
"loss": 0.833,
|
1003 |
+
"step": 142
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.36666666666666664,
|
1007 |
+
"grad_norm": 2.0472512245178223,
|
1008 |
+
"learning_rate": 6.391752577319588e-06,
|
1009 |
+
"loss": 1.043,
|
1010 |
+
"step": 143
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.36923076923076925,
|
1014 |
+
"grad_norm": 1.9477477073669434,
|
1015 |
+
"learning_rate": 6.365979381443299e-06,
|
1016 |
+
"loss": 0.9644,
|
1017 |
+
"step": 144
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.3717948717948718,
|
1021 |
+
"grad_norm": 1.9295361042022705,
|
1022 |
+
"learning_rate": 6.34020618556701e-06,
|
1023 |
+
"loss": 0.9746,
|
1024 |
+
"step": 145
|
1025 |
+
},
|
1026 |
+
{
|
1027 |
+
"epoch": 0.37435897435897436,
|
1028 |
+
"grad_norm": 1.9540655612945557,
|
1029 |
+
"learning_rate": 6.314432989690722e-06,
|
1030 |
+
"loss": 0.9375,
|
1031 |
+
"step": 146
|
1032 |
+
},
|
1033 |
+
{
|
1034 |
+
"epoch": 0.3769230769230769,
|
1035 |
+
"grad_norm": 1.9495689868927002,
|
1036 |
+
"learning_rate": 6.288659793814433e-06,
|
1037 |
+
"loss": 1.123,
|
1038 |
+
"step": 147
|
1039 |
+
},
|
1040 |
+
{
|
1041 |
+
"epoch": 0.37948717948717947,
|
1042 |
+
"grad_norm": 1.8979523181915283,
|
1043 |
+
"learning_rate": 6.262886597938145e-06,
|
1044 |
+
"loss": 1.0762,
|
1045 |
+
"step": 148
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.382051282051282,
|
1049 |
+
"grad_norm": 2.086167573928833,
|
1050 |
+
"learning_rate": 6.237113402061856e-06,
|
1051 |
+
"loss": 0.8975,
|
1052 |
+
"step": 149
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.38461538461538464,
|
1056 |
+
"grad_norm": 1.9562528133392334,
|
1057 |
+
"learning_rate": 6.211340206185568e-06,
|
1058 |
+
"loss": 0.9429,
|
1059 |
+
"step": 150
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.3871794871794872,
|
1063 |
+
"grad_norm": 2.3442628383636475,
|
1064 |
+
"learning_rate": 6.185567010309279e-06,
|
1065 |
+
"loss": 0.9844,
|
1066 |
+
"step": 151
|
1067 |
+
},
|
1068 |
+
{
|
1069 |
+
"epoch": 0.38974358974358975,
|
1070 |
+
"grad_norm": 1.8352185487747192,
|
1071 |
+
"learning_rate": 6.15979381443299e-06,
|
1072 |
+
"loss": 1.1045,
|
1073 |
+
"step": 152
|
1074 |
+
},
|
1075 |
+
{
|
1076 |
+
"epoch": 0.3923076923076923,
|
1077 |
+
"grad_norm": 3.1961944103240967,
|
1078 |
+
"learning_rate": 6.134020618556702e-06,
|
1079 |
+
"loss": 1.0596,
|
1080 |
+
"step": 153
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.39487179487179486,
|
1084 |
+
"grad_norm": 1.8429200649261475,
|
1085 |
+
"learning_rate": 6.108247422680414e-06,
|
1086 |
+
"loss": 0.9365,
|
1087 |
+
"step": 154
|
1088 |
+
},
|
1089 |
+
{
|
1090 |
+
"epoch": 0.3974358974358974,
|
1091 |
+
"grad_norm": 1.929801106452942,
|
1092 |
+
"learning_rate": 6.082474226804124e-06,
|
1093 |
+
"loss": 0.9883,
|
1094 |
+
"step": 155
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.4,
|
1098 |
+
"grad_norm": 1.670444369316101,
|
1099 |
+
"learning_rate": 6.056701030927835e-06,
|
1100 |
+
"loss": 0.7524,
|
1101 |
+
"step": 156
|
1102 |
+
},
|
1103 |
+
{
|
1104 |
+
"epoch": 0.4025641025641026,
|
1105 |
+
"grad_norm": 2.022891044616699,
|
1106 |
+
"learning_rate": 6.030927835051547e-06,
|
1107 |
+
"loss": 1.2197,
|
1108 |
+
"step": 157
|
1109 |
+
},
|
1110 |
+
{
|
1111 |
+
"epoch": 0.40512820512820513,
|
1112 |
+
"grad_norm": 1.7056248188018799,
|
1113 |
+
"learning_rate": 6.005154639175258e-06,
|
1114 |
+
"loss": 0.9121,
|
1115 |
+
"step": 158
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.4076923076923077,
|
1119 |
+
"grad_norm": 2.0686631202697754,
|
1120 |
+
"learning_rate": 5.979381443298969e-06,
|
1121 |
+
"loss": 1.1865,
|
1122 |
+
"step": 159
|
1123 |
+
},
|
1124 |
+
{
|
1125 |
+
"epoch": 0.41025641025641024,
|
1126 |
+
"grad_norm": 1.8868600130081177,
|
1127 |
+
"learning_rate": 5.9536082474226805e-06,
|
1128 |
+
"loss": 0.9658,
|
1129 |
+
"step": 160
|
1130 |
+
},
|
1131 |
+
{
|
1132 |
+
"epoch": 0.4128205128205128,
|
1133 |
+
"grad_norm": 2.3580541610717773,
|
1134 |
+
"learning_rate": 5.927835051546393e-06,
|
1135 |
+
"loss": 0.9297,
|
1136 |
+
"step": 161
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.4153846153846154,
|
1140 |
+
"grad_norm": 2.071708917617798,
|
1141 |
+
"learning_rate": 5.902061855670104e-06,
|
1142 |
+
"loss": 1.0693,
|
1143 |
+
"step": 162
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.41794871794871796,
|
1147 |
+
"grad_norm": 1.8569782972335815,
|
1148 |
+
"learning_rate": 5.876288659793815e-06,
|
1149 |
+
"loss": 0.9438,
|
1150 |
+
"step": 163
|
1151 |
+
},
|
1152 |
+
{
|
1153 |
+
"epoch": 0.4205128205128205,
|
1154 |
+
"grad_norm": 1.7496881484985352,
|
1155 |
+
"learning_rate": 5.8505154639175264e-06,
|
1156 |
+
"loss": 0.8574,
|
1157 |
+
"step": 164
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.4230769230769231,
|
1161 |
+
"grad_norm": 1.825770378112793,
|
1162 |
+
"learning_rate": 5.824742268041238e-06,
|
1163 |
+
"loss": 0.9678,
|
1164 |
+
"step": 165
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.4256410256410256,
|
1168 |
+
"grad_norm": 2.156632423400879,
|
1169 |
+
"learning_rate": 5.79896907216495e-06,
|
1170 |
+
"loss": 1.2031,
|
1171 |
+
"step": 166
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.4282051282051282,
|
1175 |
+
"grad_norm": 1.6969801187515259,
|
1176 |
+
"learning_rate": 5.7731958762886594e-06,
|
1177 |
+
"loss": 0.8359,
|
1178 |
+
"step": 167
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.4307692307692308,
|
1182 |
+
"grad_norm": 2.4445745944976807,
|
1183 |
+
"learning_rate": 5.7474226804123716e-06,
|
1184 |
+
"loss": 1.0293,
|
1185 |
+
"step": 168
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 0.43333333333333335,
|
1189 |
+
"grad_norm": 1.9905025959014893,
|
1190 |
+
"learning_rate": 5.721649484536083e-06,
|
1191 |
+
"loss": 1.0791,
|
1192 |
+
"step": 169
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"epoch": 0.4358974358974359,
|
1196 |
+
"grad_norm": 1.9443804025650024,
|
1197 |
+
"learning_rate": 5.695876288659794e-06,
|
1198 |
+
"loss": 0.9702,
|
1199 |
+
"step": 170
|
1200 |
+
},
|
1201 |
+
{
|
1202 |
+
"epoch": 0.43846153846153846,
|
1203 |
+
"grad_norm": 2.2694649696350098,
|
1204 |
+
"learning_rate": 5.670103092783505e-06,
|
1205 |
+
"loss": 1.1914,
|
1206 |
+
"step": 171
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.441025641025641,
|
1210 |
+
"grad_norm": 2.1340649127960205,
|
1211 |
+
"learning_rate": 5.644329896907217e-06,
|
1212 |
+
"loss": 1.0371,
|
1213 |
+
"step": 172
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.44358974358974357,
|
1217 |
+
"grad_norm": 1.9536010026931763,
|
1218 |
+
"learning_rate": 5.618556701030928e-06,
|
1219 |
+
"loss": 0.9888,
|
1220 |
+
"step": 173
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.4461538461538462,
|
1224 |
+
"grad_norm": 1.837241530418396,
|
1225 |
+
"learning_rate": 5.59278350515464e-06,
|
1226 |
+
"loss": 0.9033,
|
1227 |
+
"step": 174
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 0.44871794871794873,
|
1231 |
+
"grad_norm": 1.8256818056106567,
|
1232 |
+
"learning_rate": 5.567010309278351e-06,
|
1233 |
+
"loss": 1.0117,
|
1234 |
+
"step": 175
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.4512820512820513,
|
1238 |
+
"grad_norm": 2.1817359924316406,
|
1239 |
+
"learning_rate": 5.541237113402063e-06,
|
1240 |
+
"loss": 0.8506,
|
1241 |
+
"step": 176
|
1242 |
+
},
|
1243 |
+
{
|
1244 |
+
"epoch": 0.45384615384615384,
|
1245 |
+
"grad_norm": 1.7470033168792725,
|
1246 |
+
"learning_rate": 5.515463917525774e-06,
|
1247 |
+
"loss": 0.9473,
|
1248 |
+
"step": 177
|
1249 |
+
},
|
1250 |
+
{
|
1251 |
+
"epoch": 0.4564102564102564,
|
1252 |
+
"grad_norm": 1.8381420373916626,
|
1253 |
+
"learning_rate": 5.489690721649485e-06,
|
1254 |
+
"loss": 0.8828,
|
1255 |
+
"step": 178
|
1256 |
+
},
|
1257 |
+
{
|
1258 |
+
"epoch": 0.45897435897435895,
|
1259 |
+
"grad_norm": 1.9407833814620972,
|
1260 |
+
"learning_rate": 5.463917525773196e-06,
|
1261 |
+
"loss": 1.3193,
|
1262 |
+
"step": 179
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.46153846153846156,
|
1266 |
+
"grad_norm": 1.9037673473358154,
|
1267 |
+
"learning_rate": 5.438144329896907e-06,
|
1268 |
+
"loss": 0.916,
|
1269 |
+
"step": 180
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.4641025641025641,
|
1273 |
+
"grad_norm": 1.8702125549316406,
|
1274 |
+
"learning_rate": 5.412371134020619e-06,
|
1275 |
+
"loss": 1.0039,
|
1276 |
+
"step": 181
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 0.4666666666666667,
|
1280 |
+
"grad_norm": 2.0988097190856934,
|
1281 |
+
"learning_rate": 5.38659793814433e-06,
|
1282 |
+
"loss": 1.0225,
|
1283 |
+
"step": 182
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.46923076923076923,
|
1287 |
+
"grad_norm": 1.9512522220611572,
|
1288 |
+
"learning_rate": 5.360824742268042e-06,
|
1289 |
+
"loss": 0.9854,
|
1290 |
+
"step": 183
|
1291 |
+
},
|
1292 |
+
{
|
1293 |
+
"epoch": 0.4717948717948718,
|
1294 |
+
"grad_norm": 1.8114992380142212,
|
1295 |
+
"learning_rate": 5.335051546391753e-06,
|
1296 |
+
"loss": 0.8008,
|
1297 |
+
"step": 184
|
1298 |
+
},
|
1299 |
+
{
|
1300 |
+
"epoch": 0.47435897435897434,
|
1301 |
+
"grad_norm": 1.7766282558441162,
|
1302 |
+
"learning_rate": 5.309278350515464e-06,
|
1303 |
+
"loss": 0.9795,
|
1304 |
+
"step": 185
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.47692307692307695,
|
1308 |
+
"grad_norm": 2.319395065307617,
|
1309 |
+
"learning_rate": 5.2835051546391755e-06,
|
1310 |
+
"loss": 1.1572,
|
1311 |
+
"step": 186
|
1312 |
+
},
|
1313 |
+
{
|
1314 |
+
"epoch": 0.4794871794871795,
|
1315 |
+
"grad_norm": 1.7959656715393066,
|
1316 |
+
"learning_rate": 5.257731958762888e-06,
|
1317 |
+
"loss": 0.8994,
|
1318 |
+
"step": 187
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 0.48205128205128206,
|
1322 |
+
"grad_norm": 1.7262598276138306,
|
1323 |
+
"learning_rate": 5.231958762886599e-06,
|
1324 |
+
"loss": 1.0264,
|
1325 |
+
"step": 188
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.4846153846153846,
|
1329 |
+
"grad_norm": 1.9442336559295654,
|
1330 |
+
"learning_rate": 5.20618556701031e-06,
|
1331 |
+
"loss": 1.0674,
|
1332 |
+
"step": 189
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.48717948717948717,
|
1336 |
+
"grad_norm": 1.7376888990402222,
|
1337 |
+
"learning_rate": 5.1804123711340214e-06,
|
1338 |
+
"loss": 0.8032,
|
1339 |
+
"step": 190
|
1340 |
+
},
|
1341 |
+
{
|
1342 |
+
"epoch": 0.4897435897435897,
|
1343 |
+
"grad_norm": 1.5488858222961426,
|
1344 |
+
"learning_rate": 5.154639175257732e-06,
|
1345 |
+
"loss": 0.8101,
|
1346 |
+
"step": 191
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.49230769230769234,
|
1350 |
+
"grad_norm": 1.9175901412963867,
|
1351 |
+
"learning_rate": 5.128865979381443e-06,
|
1352 |
+
"loss": 0.8418,
|
1353 |
+
"step": 192
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.4948717948717949,
|
1357 |
+
"grad_norm": 2.069321393966675,
|
1358 |
+
"learning_rate": 5.1030927835051544e-06,
|
1359 |
+
"loss": 1.1826,
|
1360 |
+
"step": 193
|
1361 |
+
},
|
1362 |
+
{
|
1363 |
+
"epoch": 0.49743589743589745,
|
1364 |
+
"grad_norm": 1.918543815612793,
|
1365 |
+
"learning_rate": 5.077319587628866e-06,
|
1366 |
+
"loss": 1.0059,
|
1367 |
+
"step": 194
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 0.5,
|
1371 |
+
"grad_norm": 1.7345309257507324,
|
1372 |
+
"learning_rate": 5.051546391752578e-06,
|
1373 |
+
"loss": 0.9028,
|
1374 |
+
"step": 195
|
1375 |
+
},
|
1376 |
+
{
|
1377 |
+
"epoch": 0.5025641025641026,
|
1378 |
+
"grad_norm": 1.7581024169921875,
|
1379 |
+
"learning_rate": 5.025773195876289e-06,
|
1380 |
+
"loss": 1.0,
|
1381 |
+
"step": 196
|
1382 |
+
},
|
1383 |
+
{
|
1384 |
+
"epoch": 0.5051282051282051,
|
1385 |
+
"grad_norm": 2.021634817123413,
|
1386 |
+
"learning_rate": 5e-06,
|
1387 |
+
"loss": 0.8677,
|
1388 |
+
"step": 197
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.5076923076923077,
|
1392 |
+
"grad_norm": 2.0879619121551514,
|
1393 |
+
"learning_rate": 4.974226804123712e-06,
|
1394 |
+
"loss": 1.1279,
|
1395 |
+
"step": 198
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.5102564102564102,
|
1399 |
+
"grad_norm": 2.040804386138916,
|
1400 |
+
"learning_rate": 4.948453608247423e-06,
|
1401 |
+
"loss": 1.2178,
|
1402 |
+
"step": 199
|
1403 |
+
},
|
1404 |
+
{
|
1405 |
+
"epoch": 0.5128205128205128,
|
1406 |
+
"grad_norm": 2.0652830600738525,
|
1407 |
+
"learning_rate": 4.922680412371135e-06,
|
1408 |
+
"loss": 0.873,
|
1409 |
+
"step": 200
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 0.5153846153846153,
|
1413 |
+
"grad_norm": 1.8770358562469482,
|
1414 |
+
"learning_rate": 4.8969072164948455e-06,
|
1415 |
+
"loss": 0.7212,
|
1416 |
+
"step": 201
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"epoch": 0.517948717948718,
|
1420 |
+
"grad_norm": 1.8745349645614624,
|
1421 |
+
"learning_rate": 4.871134020618557e-06,
|
1422 |
+
"loss": 1.126,
|
1423 |
+
"step": 202
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.5205128205128206,
|
1427 |
+
"grad_norm": 1.8858857154846191,
|
1428 |
+
"learning_rate": 4.845360824742268e-06,
|
1429 |
+
"loss": 1.0771,
|
1430 |
+
"step": 203
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.5230769230769231,
|
1434 |
+
"grad_norm": 2.110069513320923,
|
1435 |
+
"learning_rate": 4.81958762886598e-06,
|
1436 |
+
"loss": 1.2754,
|
1437 |
+
"step": 204
|
1438 |
+
},
|
1439 |
+
{
|
1440 |
+
"epoch": 0.5256410256410257,
|
1441 |
+
"grad_norm": 4.52376127243042,
|
1442 |
+
"learning_rate": 4.7938144329896915e-06,
|
1443 |
+
"loss": 1.1182,
|
1444 |
+
"step": 205
|
1445 |
+
},
|
1446 |
+
{
|
1447 |
+
"epoch": 0.5282051282051282,
|
1448 |
+
"grad_norm": 1.6591471433639526,
|
1449 |
+
"learning_rate": 4.768041237113403e-06,
|
1450 |
+
"loss": 0.8276,
|
1451 |
+
"step": 206
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"epoch": 0.5307692307692308,
|
1455 |
+
"grad_norm": 1.9472140073776245,
|
1456 |
+
"learning_rate": 4.742268041237113e-06,
|
1457 |
+
"loss": 1.0273,
|
1458 |
+
"step": 207
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.5333333333333333,
|
1462 |
+
"grad_norm": 1.8485890626907349,
|
1463 |
+
"learning_rate": 4.716494845360825e-06,
|
1464 |
+
"loss": 0.813,
|
1465 |
+
"step": 208
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"epoch": 0.5358974358974359,
|
1469 |
+
"grad_norm": 1.7967491149902344,
|
1470 |
+
"learning_rate": 4.690721649484537e-06,
|
1471 |
+
"loss": 0.9946,
|
1472 |
+
"step": 209
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.5384615384615384,
|
1476 |
+
"grad_norm": 1.7534973621368408,
|
1477 |
+
"learning_rate": 4.664948453608248e-06,
|
1478 |
+
"loss": 0.7993,
|
1479 |
+
"step": 210
|
1480 |
+
},
|
1481 |
+
{
|
1482 |
+
"epoch": 0.541025641025641,
|
1483 |
+
"grad_norm": 1.8620507717132568,
|
1484 |
+
"learning_rate": 4.639175257731959e-06,
|
1485 |
+
"loss": 0.9341,
|
1486 |
+
"step": 211
|
1487 |
+
},
|
1488 |
+
{
|
1489 |
+
"epoch": 0.5435897435897435,
|
1490 |
+
"grad_norm": 1.8512839078903198,
|
1491 |
+
"learning_rate": 4.6134020618556705e-06,
|
1492 |
+
"loss": 0.8013,
|
1493 |
+
"step": 212
|
1494 |
+
},
|
1495 |
+
{
|
1496 |
+
"epoch": 0.5461538461538461,
|
1497 |
+
"grad_norm": 2.151174306869507,
|
1498 |
+
"learning_rate": 4.587628865979382e-06,
|
1499 |
+
"loss": 1.2969,
|
1500 |
+
"step": 213
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 0.5487179487179488,
|
1504 |
+
"grad_norm": 1.9421318769454956,
|
1505 |
+
"learning_rate": 4.561855670103093e-06,
|
1506 |
+
"loss": 0.9375,
|
1507 |
+
"step": 214
|
1508 |
+
},
|
1509 |
+
{
|
1510 |
+
"epoch": 0.5512820512820513,
|
1511 |
+
"grad_norm": 1.6634801626205444,
|
1512 |
+
"learning_rate": 4.536082474226804e-06,
|
1513 |
+
"loss": 0.7603,
|
1514 |
+
"step": 215
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.5538461538461539,
|
1518 |
+
"grad_norm": 1.8529914617538452,
|
1519 |
+
"learning_rate": 4.510309278350516e-06,
|
1520 |
+
"loss": 0.8545,
|
1521 |
+
"step": 216
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.5564102564102564,
|
1525 |
+
"grad_norm": 1.8996697664260864,
|
1526 |
+
"learning_rate": 4.484536082474228e-06,
|
1527 |
+
"loss": 0.9492,
|
1528 |
+
"step": 217
|
1529 |
+
},
|
1530 |
+
{
|
1531 |
+
"epoch": 0.558974358974359,
|
1532 |
+
"grad_norm": 1.793915033340454,
|
1533 |
+
"learning_rate": 4.458762886597939e-06,
|
1534 |
+
"loss": 0.6826,
|
1535 |
+
"step": 218
|
1536 |
+
},
|
1537 |
+
{
|
1538 |
+
"epoch": 0.5615384615384615,
|
1539 |
+
"grad_norm": 2.973825454711914,
|
1540 |
+
"learning_rate": 4.4329896907216494e-06,
|
1541 |
+
"loss": 0.9023,
|
1542 |
+
"step": 219
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.5641025641025641,
|
1546 |
+
"grad_norm": 1.786086082458496,
|
1547 |
+
"learning_rate": 4.407216494845361e-06,
|
1548 |
+
"loss": 0.9502,
|
1549 |
+
"step": 220
|
1550 |
+
},
|
1551 |
+
{
|
1552 |
+
"epoch": 0.5666666666666667,
|
1553 |
+
"grad_norm": 2.263026714324951,
|
1554 |
+
"learning_rate": 4.381443298969073e-06,
|
1555 |
+
"loss": 0.9326,
|
1556 |
+
"step": 221
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.5692307692307692,
|
1560 |
+
"grad_norm": 2.35546612739563,
|
1561 |
+
"learning_rate": 4.355670103092784e-06,
|
1562 |
+
"loss": 1.1348,
|
1563 |
+
"step": 222
|
1564 |
+
},
|
1565 |
+
{
|
1566 |
+
"epoch": 0.5717948717948718,
|
1567 |
+
"grad_norm": 1.6735016107559204,
|
1568 |
+
"learning_rate": 4.329896907216495e-06,
|
1569 |
+
"loss": 0.9204,
|
1570 |
+
"step": 223
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"epoch": 0.5743589743589743,
|
1574 |
+
"grad_norm": 2.4395010471343994,
|
1575 |
+
"learning_rate": 4.304123711340207e-06,
|
1576 |
+
"loss": 1.1689,
|
1577 |
+
"step": 224
|
1578 |
+
},
|
1579 |
+
{
|
1580 |
+
"epoch": 0.5769230769230769,
|
1581 |
+
"grad_norm": 1.8484439849853516,
|
1582 |
+
"learning_rate": 4.278350515463918e-06,
|
1583 |
+
"loss": 0.9751,
|
1584 |
+
"step": 225
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.5794871794871795,
|
1588 |
+
"grad_norm": 2.61309552192688,
|
1589 |
+
"learning_rate": 4.252577319587629e-06,
|
1590 |
+
"loss": 0.9272,
|
1591 |
+
"step": 226
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 0.5820512820512821,
|
1595 |
+
"grad_norm": 1.8143435716629028,
|
1596 |
+
"learning_rate": 4.2268041237113405e-06,
|
1597 |
+
"loss": 1.0508,
|
1598 |
+
"step": 227
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.5846153846153846,
|
1602 |
+
"grad_norm": 1.9212270975112915,
|
1603 |
+
"learning_rate": 4.201030927835052e-06,
|
1604 |
+
"loss": 0.8813,
|
1605 |
+
"step": 228
|
1606 |
+
},
|
1607 |
+
{
|
1608 |
+
"epoch": 0.5871794871794872,
|
1609 |
+
"grad_norm": 2.3576104640960693,
|
1610 |
+
"learning_rate": 4.175257731958763e-06,
|
1611 |
+
"loss": 0.98,
|
1612 |
+
"step": 229
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.5897435897435898,
|
1616 |
+
"grad_norm": 2.2258710861206055,
|
1617 |
+
"learning_rate": 4.149484536082475e-06,
|
1618 |
+
"loss": 0.9766,
|
1619 |
+
"step": 230
|
1620 |
+
},
|
1621 |
+
{
|
1622 |
+
"epoch": 0.5923076923076923,
|
1623 |
+
"grad_norm": 1.8784958124160767,
|
1624 |
+
"learning_rate": 4.123711340206186e-06,
|
1625 |
+
"loss": 0.9575,
|
1626 |
+
"step": 231
|
1627 |
+
},
|
1628 |
+
{
|
1629 |
+
"epoch": 0.5948717948717949,
|
1630 |
+
"grad_norm": 1.7360793352127075,
|
1631 |
+
"learning_rate": 4.097938144329897e-06,
|
1632 |
+
"loss": 0.9014,
|
1633 |
+
"step": 232
|
1634 |
+
},
|
1635 |
+
{
|
1636 |
+
"epoch": 0.5974358974358974,
|
1637 |
+
"grad_norm": 2.718904733657837,
|
1638 |
+
"learning_rate": 4.072164948453608e-06,
|
1639 |
+
"loss": 0.8682,
|
1640 |
+
"step": 233
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.6,
|
1644 |
+
"grad_norm": 3.4316585063934326,
|
1645 |
+
"learning_rate": 4.04639175257732e-06,
|
1646 |
+
"loss": 0.8096,
|
1647 |
+
"step": 234
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.6025641025641025,
|
1651 |
+
"grad_norm": 1.9802138805389404,
|
1652 |
+
"learning_rate": 4.020618556701032e-06,
|
1653 |
+
"loss": 1.1055,
|
1654 |
+
"step": 235
|
1655 |
+
},
|
1656 |
+
{
|
1657 |
+
"epoch": 0.6051282051282051,
|
1658 |
+
"grad_norm": 2.3054115772247314,
|
1659 |
+
"learning_rate": 3.994845360824743e-06,
|
1660 |
+
"loss": 0.8696,
|
1661 |
+
"step": 236
|
1662 |
+
},
|
1663 |
+
{
|
1664 |
+
"epoch": 0.6076923076923076,
|
1665 |
+
"grad_norm": 2.1070103645324707,
|
1666 |
+
"learning_rate": 3.969072164948453e-06,
|
1667 |
+
"loss": 0.9907,
|
1668 |
+
"step": 237
|
1669 |
+
},
|
1670 |
+
{
|
1671 |
+
"epoch": 0.6102564102564103,
|
1672 |
+
"grad_norm": 1.71999192237854,
|
1673 |
+
"learning_rate": 3.9432989690721655e-06,
|
1674 |
+
"loss": 1.0342,
|
1675 |
+
"step": 238
|
1676 |
+
},
|
1677 |
+
{
|
1678 |
+
"epoch": 0.6128205128205129,
|
1679 |
+
"grad_norm": 1.7554974555969238,
|
1680 |
+
"learning_rate": 3.917525773195877e-06,
|
1681 |
+
"loss": 0.9712,
|
1682 |
+
"step": 239
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.6153846153846154,
|
1686 |
+
"grad_norm": 1.8095436096191406,
|
1687 |
+
"learning_rate": 3.891752577319588e-06,
|
1688 |
+
"loss": 1.0586,
|
1689 |
+
"step": 240
|
1690 |
+
},
|
1691 |
+
{
|
1692 |
+
"epoch": 0.617948717948718,
|
1693 |
+
"grad_norm": 2.331573963165283,
|
1694 |
+
"learning_rate": 3.865979381443299e-06,
|
1695 |
+
"loss": 1.1729,
|
1696 |
+
"step": 241
|
1697 |
+
},
|
1698 |
+
{
|
1699 |
+
"epoch": 0.6205128205128205,
|
1700 |
+
"grad_norm": 1.8929247856140137,
|
1701 |
+
"learning_rate": 3.840206185567011e-06,
|
1702 |
+
"loss": 1.0576,
|
1703 |
+
"step": 242
|
1704 |
+
},
|
1705 |
+
{
|
1706 |
+
"epoch": 0.6230769230769231,
|
1707 |
+
"grad_norm": 1.6739861965179443,
|
1708 |
+
"learning_rate": 3.814432989690722e-06,
|
1709 |
+
"loss": 0.8008,
|
1710 |
+
"step": 243
|
1711 |
+
},
|
1712 |
+
{
|
1713 |
+
"epoch": 0.6256410256410256,
|
1714 |
+
"grad_norm": 1.6616827249526978,
|
1715 |
+
"learning_rate": 3.788659793814433e-06,
|
1716 |
+
"loss": 0.876,
|
1717 |
+
"step": 244
|
1718 |
+
},
|
1719 |
+
{
|
1720 |
+
"epoch": 0.6282051282051282,
|
1721 |
+
"grad_norm": 7.3671746253967285,
|
1722 |
+
"learning_rate": 3.7628865979381445e-06,
|
1723 |
+
"loss": 1.0293,
|
1724 |
+
"step": 245
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.6307692307692307,
|
1728 |
+
"grad_norm": 1.9617962837219238,
|
1729 |
+
"learning_rate": 3.737113402061856e-06,
|
1730 |
+
"loss": 1.0117,
|
1731 |
+
"step": 246
|
1732 |
+
},
|
1733 |
+
{
|
1734 |
+
"epoch": 0.6333333333333333,
|
1735 |
+
"grad_norm": 1.3733716011047363,
|
1736 |
+
"learning_rate": 3.7113402061855674e-06,
|
1737 |
+
"loss": 0.6865,
|
1738 |
+
"step": 247
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"epoch": 0.6358974358974359,
|
1742 |
+
"grad_norm": 1.6532529592514038,
|
1743 |
+
"learning_rate": 3.6855670103092787e-06,
|
1744 |
+
"loss": 0.9604,
|
1745 |
+
"step": 248
|
1746 |
+
},
|
1747 |
+
{
|
1748 |
+
"epoch": 0.6384615384615384,
|
1749 |
+
"grad_norm": 1.8402736186981201,
|
1750 |
+
"learning_rate": 3.6597938144329896e-06,
|
1751 |
+
"loss": 0.916,
|
1752 |
+
"step": 249
|
1753 |
+
},
|
1754 |
+
{
|
1755 |
+
"epoch": 0.6410256410256411,
|
1756 |
+
"grad_norm": 1.7600955963134766,
|
1757 |
+
"learning_rate": 3.6340206185567013e-06,
|
1758 |
+
"loss": 0.9678,
|
1759 |
+
"step": 250
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 0.6435897435897436,
|
1763 |
+
"grad_norm": 1.6891589164733887,
|
1764 |
+
"learning_rate": 3.6082474226804126e-06,
|
1765 |
+
"loss": 0.793,
|
1766 |
+
"step": 251
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.6461538461538462,
|
1770 |
+
"grad_norm": 1.8142110109329224,
|
1771 |
+
"learning_rate": 3.582474226804124e-06,
|
1772 |
+
"loss": 1.0518,
|
1773 |
+
"step": 252
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 0.6487179487179487,
|
1777 |
+
"grad_norm": 2.1421236991882324,
|
1778 |
+
"learning_rate": 3.5567010309278356e-06,
|
1779 |
+
"loss": 0.9414,
|
1780 |
+
"step": 253
|
1781 |
+
},
|
1782 |
+
{
|
1783 |
+
"epoch": 0.6512820512820513,
|
1784 |
+
"grad_norm": 5.681818962097168,
|
1785 |
+
"learning_rate": 3.530927835051547e-06,
|
1786 |
+
"loss": 0.9951,
|
1787 |
+
"step": 254
|
1788 |
+
},
|
1789 |
+
{
|
1790 |
+
"epoch": 0.6538461538461539,
|
1791 |
+
"grad_norm": 2.093968391418457,
|
1792 |
+
"learning_rate": 3.5051546391752577e-06,
|
1793 |
+
"loss": 0.7842,
|
1794 |
+
"step": 255
|
1795 |
+
},
|
1796 |
+
{
|
1797 |
+
"epoch": 0.6564102564102564,
|
1798 |
+
"grad_norm": 1.8707085847854614,
|
1799 |
+
"learning_rate": 3.4793814432989694e-06,
|
1800 |
+
"loss": 0.9858,
|
1801 |
+
"step": 256
|
1802 |
+
},
|
1803 |
+
{
|
1804 |
+
"epoch": 0.658974358974359,
|
1805 |
+
"grad_norm": 1.9755574464797974,
|
1806 |
+
"learning_rate": 3.4536082474226807e-06,
|
1807 |
+
"loss": 0.9136,
|
1808 |
+
"step": 257
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.6615384615384615,
|
1812 |
+
"grad_norm": 2.0634946823120117,
|
1813 |
+
"learning_rate": 3.427835051546392e-06,
|
1814 |
+
"loss": 0.7593,
|
1815 |
+
"step": 258
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 0.6641025641025641,
|
1819 |
+
"grad_norm": 1.842301845550537,
|
1820 |
+
"learning_rate": 3.4020618556701037e-06,
|
1821 |
+
"loss": 0.8062,
|
1822 |
+
"step": 259
|
1823 |
+
},
|
1824 |
+
{
|
1825 |
+
"epoch": 0.6666666666666666,
|
1826 |
+
"grad_norm": 1.857254981994629,
|
1827 |
+
"learning_rate": 3.376288659793815e-06,
|
1828 |
+
"loss": 1.2021,
|
1829 |
+
"step": 260
|
1830 |
+
},
|
1831 |
+
{
|
1832 |
+
"epoch": 0.6692307692307692,
|
1833 |
+
"grad_norm": 1.9125348329544067,
|
1834 |
+
"learning_rate": 3.350515463917526e-06,
|
1835 |
+
"loss": 1.084,
|
1836 |
+
"step": 261
|
1837 |
+
},
|
1838 |
+
{
|
1839 |
+
"epoch": 0.6717948717948717,
|
1840 |
+
"grad_norm": 1.8903979063034058,
|
1841 |
+
"learning_rate": 3.324742268041237e-06,
|
1842 |
+
"loss": 0.7666,
|
1843 |
+
"step": 262
|
1844 |
+
},
|
1845 |
+
{
|
1846 |
+
"epoch": 0.6743589743589744,
|
1847 |
+
"grad_norm": 1.981501579284668,
|
1848 |
+
"learning_rate": 3.298969072164949e-06,
|
1849 |
+
"loss": 1.0508,
|
1850 |
+
"step": 263
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.676923076923077,
|
1854 |
+
"grad_norm": 1.5312262773513794,
|
1855 |
+
"learning_rate": 3.27319587628866e-06,
|
1856 |
+
"loss": 0.7231,
|
1857 |
+
"step": 264
|
1858 |
+
},
|
1859 |
+
{
|
1860 |
+
"epoch": 0.6794871794871795,
|
1861 |
+
"grad_norm": 1.6376142501831055,
|
1862 |
+
"learning_rate": 3.2474226804123714e-06,
|
1863 |
+
"loss": 0.8013,
|
1864 |
+
"step": 265
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 0.6820512820512821,
|
1868 |
+
"grad_norm": 1.5917991399765015,
|
1869 |
+
"learning_rate": 3.221649484536083e-06,
|
1870 |
+
"loss": 0.8042,
|
1871 |
+
"step": 266
|
1872 |
+
},
|
1873 |
+
{
|
1874 |
+
"epoch": 0.6846153846153846,
|
1875 |
+
"grad_norm": 1.497527837753296,
|
1876 |
+
"learning_rate": 3.195876288659794e-06,
|
1877 |
+
"loss": 0.7031,
|
1878 |
+
"step": 267
|
1879 |
+
},
|
1880 |
+
{
|
1881 |
+
"epoch": 0.6871794871794872,
|
1882 |
+
"grad_norm": 1.692023515701294,
|
1883 |
+
"learning_rate": 3.170103092783505e-06,
|
1884 |
+
"loss": 0.6646,
|
1885 |
+
"step": 268
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 0.6897435897435897,
|
1889 |
+
"grad_norm": 1.862017273902893,
|
1890 |
+
"learning_rate": 3.1443298969072165e-06,
|
1891 |
+
"loss": 0.8765,
|
1892 |
+
"step": 269
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.6923076923076923,
|
1896 |
+
"grad_norm": 2.128854513168335,
|
1897 |
+
"learning_rate": 3.118556701030928e-06,
|
1898 |
+
"loss": 0.7183,
|
1899 |
+
"step": 270
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 0.6948717948717948,
|
1903 |
+
"grad_norm": 1.7785433530807495,
|
1904 |
+
"learning_rate": 3.0927835051546395e-06,
|
1905 |
+
"loss": 0.9966,
|
1906 |
+
"step": 271
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 0.6974358974358974,
|
1910 |
+
"grad_norm": 1.8306283950805664,
|
1911 |
+
"learning_rate": 3.067010309278351e-06,
|
1912 |
+
"loss": 0.7773,
|
1913 |
+
"step": 272
|
1914 |
+
},
|
1915 |
+
{
|
1916 |
+
"epoch": 0.7,
|
1917 |
+
"grad_norm": 1.5251365900039673,
|
1918 |
+
"learning_rate": 3.041237113402062e-06,
|
1919 |
+
"loss": 0.7046,
|
1920 |
+
"step": 273
|
1921 |
+
},
|
1922 |
+
{
|
1923 |
+
"epoch": 0.7025641025641025,
|
1924 |
+
"grad_norm": 2.0568642616271973,
|
1925 |
+
"learning_rate": 3.0154639175257733e-06,
|
1926 |
+
"loss": 1.0459,
|
1927 |
+
"step": 274
|
1928 |
+
},
|
1929 |
+
{
|
1930 |
+
"epoch": 0.7051282051282052,
|
1931 |
+
"grad_norm": 1.6169660091400146,
|
1932 |
+
"learning_rate": 2.9896907216494846e-06,
|
1933 |
+
"loss": 0.7451,
|
1934 |
+
"step": 275
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.7076923076923077,
|
1938 |
+
"grad_norm": 1.6986936330795288,
|
1939 |
+
"learning_rate": 2.9639175257731963e-06,
|
1940 |
+
"loss": 0.8735,
|
1941 |
+
"step": 276
|
1942 |
+
},
|
1943 |
+
{
|
1944 |
+
"epoch": 0.7102564102564103,
|
1945 |
+
"grad_norm": 1.6713733673095703,
|
1946 |
+
"learning_rate": 2.9381443298969076e-06,
|
1947 |
+
"loss": 0.8862,
|
1948 |
+
"step": 277
|
1949 |
+
},
|
1950 |
+
{
|
1951 |
+
"epoch": 0.7128205128205128,
|
1952 |
+
"grad_norm": 1.7637569904327393,
|
1953 |
+
"learning_rate": 2.912371134020619e-06,
|
1954 |
+
"loss": 0.9609,
|
1955 |
+
"step": 278
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 0.7153846153846154,
|
1959 |
+
"grad_norm": 2.076930284500122,
|
1960 |
+
"learning_rate": 2.8865979381443297e-06,
|
1961 |
+
"loss": 1.1377,
|
1962 |
+
"step": 279
|
1963 |
+
},
|
1964 |
+
{
|
1965 |
+
"epoch": 0.717948717948718,
|
1966 |
+
"grad_norm": 1.972031831741333,
|
1967 |
+
"learning_rate": 2.8608247422680414e-06,
|
1968 |
+
"loss": 0.9395,
|
1969 |
+
"step": 280
|
1970 |
+
},
|
1971 |
+
{
|
1972 |
+
"epoch": 0.7205128205128205,
|
1973 |
+
"grad_norm": 1.8608795404434204,
|
1974 |
+
"learning_rate": 2.8350515463917527e-06,
|
1975 |
+
"loss": 1.0654,
|
1976 |
+
"step": 281
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.7230769230769231,
|
1980 |
+
"grad_norm": 3.467540979385376,
|
1981 |
+
"learning_rate": 2.809278350515464e-06,
|
1982 |
+
"loss": 0.7603,
|
1983 |
+
"step": 282
|
1984 |
+
},
|
1985 |
+
{
|
1986 |
+
"epoch": 0.7256410256410256,
|
1987 |
+
"grad_norm": 1.765555739402771,
|
1988 |
+
"learning_rate": 2.7835051546391757e-06,
|
1989 |
+
"loss": 0.6758,
|
1990 |
+
"step": 283
|
1991 |
+
},
|
1992 |
+
{
|
1993 |
+
"epoch": 0.7282051282051282,
|
1994 |
+
"grad_norm": 1.6693044900894165,
|
1995 |
+
"learning_rate": 2.757731958762887e-06,
|
1996 |
+
"loss": 0.8433,
|
1997 |
+
"step": 284
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 0.7307692307692307,
|
2001 |
+
"grad_norm": 1.9119174480438232,
|
2002 |
+
"learning_rate": 2.731958762886598e-06,
|
2003 |
+
"loss": 0.8184,
|
2004 |
+
"step": 285
|
2005 |
+
},
|
2006 |
+
{
|
2007 |
+
"epoch": 0.7333333333333333,
|
2008 |
+
"grad_norm": 2.043612241744995,
|
2009 |
+
"learning_rate": 2.7061855670103095e-06,
|
2010 |
+
"loss": 1.0049,
|
2011 |
+
"step": 286
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 0.735897435897436,
|
2015 |
+
"grad_norm": 1.919756531715393,
|
2016 |
+
"learning_rate": 2.680412371134021e-06,
|
2017 |
+
"loss": 0.9229,
|
2018 |
+
"step": 287
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.7384615384615385,
|
2022 |
+
"grad_norm": 1.8900898694992065,
|
2023 |
+
"learning_rate": 2.654639175257732e-06,
|
2024 |
+
"loss": 1.0078,
|
2025 |
+
"step": 288
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 0.7410256410256411,
|
2029 |
+
"grad_norm": 1.793310284614563,
|
2030 |
+
"learning_rate": 2.628865979381444e-06,
|
2031 |
+
"loss": 1.0752,
|
2032 |
+
"step": 289
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"epoch": 0.7435897435897436,
|
2036 |
+
"grad_norm": 2.732642889022827,
|
2037 |
+
"learning_rate": 2.603092783505155e-06,
|
2038 |
+
"loss": 0.9229,
|
2039 |
+
"step": 290
|
2040 |
+
},
|
2041 |
+
{
|
2042 |
+
"epoch": 0.7461538461538462,
|
2043 |
+
"grad_norm": 1.845354676246643,
|
2044 |
+
"learning_rate": 2.577319587628866e-06,
|
2045 |
+
"loss": 0.8286,
|
2046 |
+
"step": 291
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 0.7487179487179487,
|
2050 |
+
"grad_norm": 1.9272360801696777,
|
2051 |
+
"learning_rate": 2.5515463917525772e-06,
|
2052 |
+
"loss": 1.0518,
|
2053 |
+
"step": 292
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"epoch": 0.7512820512820513,
|
2057 |
+
"grad_norm": 2.1714913845062256,
|
2058 |
+
"learning_rate": 2.525773195876289e-06,
|
2059 |
+
"loss": 0.9043,
|
2060 |
+
"step": 293
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.7538461538461538,
|
2064 |
+
"grad_norm": 1.7473788261413574,
|
2065 |
+
"learning_rate": 2.5e-06,
|
2066 |
+
"loss": 0.7793,
|
2067 |
+
"step": 294
|
2068 |
+
},
|
2069 |
+
{
|
2070 |
+
"epoch": 0.7564102564102564,
|
2071 |
+
"grad_norm": 1.9058947563171387,
|
2072 |
+
"learning_rate": 2.4742268041237115e-06,
|
2073 |
+
"loss": 0.8643,
|
2074 |
+
"step": 295
|
2075 |
+
},
|
2076 |
+
{
|
2077 |
+
"epoch": 0.7589743589743589,
|
2078 |
+
"grad_norm": 2.064485788345337,
|
2079 |
+
"learning_rate": 2.4484536082474228e-06,
|
2080 |
+
"loss": 1.1475,
|
2081 |
+
"step": 296
|
2082 |
+
},
|
2083 |
+
{
|
2084 |
+
"epoch": 0.7615384615384615,
|
2085 |
+
"grad_norm": 2.100177526473999,
|
2086 |
+
"learning_rate": 2.422680412371134e-06,
|
2087 |
+
"loss": 0.853,
|
2088 |
+
"step": 297
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 0.764102564102564,
|
2092 |
+
"grad_norm": 2.2327897548675537,
|
2093 |
+
"learning_rate": 2.3969072164948458e-06,
|
2094 |
+
"loss": 1.2168,
|
2095 |
+
"step": 298
|
2096 |
+
},
|
2097 |
+
{
|
2098 |
+
"epoch": 0.7666666666666667,
|
2099 |
+
"grad_norm": 1.9748061895370483,
|
2100 |
+
"learning_rate": 2.3711340206185566e-06,
|
2101 |
+
"loss": 1.0713,
|
2102 |
+
"step": 299
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.7692307692307693,
|
2106 |
+
"grad_norm": 1.987243890762329,
|
2107 |
+
"learning_rate": 2.3453608247422683e-06,
|
2108 |
+
"loss": 1.0508,
|
2109 |
+
"step": 300
|
2110 |
+
},
|
2111 |
+
{
|
2112 |
+
"epoch": 0.7717948717948718,
|
2113 |
+
"grad_norm": 2.191959857940674,
|
2114 |
+
"learning_rate": 2.3195876288659796e-06,
|
2115 |
+
"loss": 0.9326,
|
2116 |
+
"step": 301
|
2117 |
+
},
|
2118 |
+
{
|
2119 |
+
"epoch": 0.7743589743589744,
|
2120 |
+
"grad_norm": 2.242733955383301,
|
2121 |
+
"learning_rate": 2.293814432989691e-06,
|
2122 |
+
"loss": 0.7515,
|
2123 |
+
"step": 302
|
2124 |
+
},
|
2125 |
+
{
|
2126 |
+
"epoch": 0.7769230769230769,
|
2127 |
+
"grad_norm": 1.6882741451263428,
|
2128 |
+
"learning_rate": 2.268041237113402e-06,
|
2129 |
+
"loss": 0.7534,
|
2130 |
+
"step": 303
|
2131 |
+
},
|
2132 |
+
{
|
2133 |
+
"epoch": 0.7794871794871795,
|
2134 |
+
"grad_norm": 2.7890372276306152,
|
2135 |
+
"learning_rate": 2.242268041237114e-06,
|
2136 |
+
"loss": 0.9082,
|
2137 |
+
"step": 304
|
2138 |
+
},
|
2139 |
+
{
|
2140 |
+
"epoch": 0.782051282051282,
|
2141 |
+
"grad_norm": 2.7322838306427,
|
2142 |
+
"learning_rate": 2.2164948453608247e-06,
|
2143 |
+
"loss": 1.0332,
|
2144 |
+
"step": 305
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.7846153846153846,
|
2148 |
+
"grad_norm": 1.9101502895355225,
|
2149 |
+
"learning_rate": 2.1907216494845364e-06,
|
2150 |
+
"loss": 1.0088,
|
2151 |
+
"step": 306
|
2152 |
+
},
|
2153 |
+
{
|
2154 |
+
"epoch": 0.7871794871794872,
|
2155 |
+
"grad_norm": 1.7795121669769287,
|
2156 |
+
"learning_rate": 2.1649484536082477e-06,
|
2157 |
+
"loss": 0.9082,
|
2158 |
+
"step": 307
|
2159 |
+
},
|
2160 |
+
{
|
2161 |
+
"epoch": 0.7897435897435897,
|
2162 |
+
"grad_norm": 1.8345370292663574,
|
2163 |
+
"learning_rate": 2.139175257731959e-06,
|
2164 |
+
"loss": 1.0576,
|
2165 |
+
"step": 308
|
2166 |
+
},
|
2167 |
+
{
|
2168 |
+
"epoch": 0.7923076923076923,
|
2169 |
+
"grad_norm": 2.1167471408843994,
|
2170 |
+
"learning_rate": 2.1134020618556703e-06,
|
2171 |
+
"loss": 0.918,
|
2172 |
+
"step": 309
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"epoch": 0.7948717948717948,
|
2176 |
+
"grad_norm": 1.7261496782302856,
|
2177 |
+
"learning_rate": 2.0876288659793816e-06,
|
2178 |
+
"loss": 0.8975,
|
2179 |
+
"step": 310
|
2180 |
+
},
|
2181 |
+
{
|
2182 |
+
"epoch": 0.7974358974358975,
|
2183 |
+
"grad_norm": 1.793904185295105,
|
2184 |
+
"learning_rate": 2.061855670103093e-06,
|
2185 |
+
"loss": 0.8916,
|
2186 |
+
"step": 311
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.8,
|
2190 |
+
"grad_norm": 1.9415448904037476,
|
2191 |
+
"learning_rate": 2.036082474226804e-06,
|
2192 |
+
"loss": 0.8379,
|
2193 |
+
"step": 312
|
2194 |
+
},
|
2195 |
+
{
|
2196 |
+
"epoch": 0.8025641025641026,
|
2197 |
+
"grad_norm": 1.8090825080871582,
|
2198 |
+
"learning_rate": 2.010309278350516e-06,
|
2199 |
+
"loss": 0.8784,
|
2200 |
+
"step": 313
|
2201 |
+
},
|
2202 |
+
{
|
2203 |
+
"epoch": 0.8051282051282052,
|
2204 |
+
"grad_norm": 1.775429368019104,
|
2205 |
+
"learning_rate": 1.9845360824742267e-06,
|
2206 |
+
"loss": 0.8643,
|
2207 |
+
"step": 314
|
2208 |
+
},
|
2209 |
+
{
|
2210 |
+
"epoch": 0.8076923076923077,
|
2211 |
+
"grad_norm": 1.848243236541748,
|
2212 |
+
"learning_rate": 1.9587628865979384e-06,
|
2213 |
+
"loss": 1.1084,
|
2214 |
+
"step": 315
|
2215 |
+
},
|
2216 |
+
{
|
2217 |
+
"epoch": 0.8102564102564103,
|
2218 |
+
"grad_norm": 1.7999858856201172,
|
2219 |
+
"learning_rate": 1.9329896907216497e-06,
|
2220 |
+
"loss": 0.9321,
|
2221 |
+
"step": 316
|
2222 |
+
},
|
2223 |
+
{
|
2224 |
+
"epoch": 0.8128205128205128,
|
2225 |
+
"grad_norm": 2.8370208740234375,
|
2226 |
+
"learning_rate": 1.907216494845361e-06,
|
2227 |
+
"loss": 0.9883,
|
2228 |
+
"step": 317
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.8153846153846154,
|
2232 |
+
"grad_norm": 2.2633893489837646,
|
2233 |
+
"learning_rate": 1.8814432989690722e-06,
|
2234 |
+
"loss": 1.0166,
|
2235 |
+
"step": 318
|
2236 |
+
},
|
2237 |
+
{
|
2238 |
+
"epoch": 0.8179487179487179,
|
2239 |
+
"grad_norm": 1.9850558042526245,
|
2240 |
+
"learning_rate": 1.8556701030927837e-06,
|
2241 |
+
"loss": 1.0283,
|
2242 |
+
"step": 319
|
2243 |
+
},
|
2244 |
+
{
|
2245 |
+
"epoch": 0.8205128205128205,
|
2246 |
+
"grad_norm": 1.904843807220459,
|
2247 |
+
"learning_rate": 1.8298969072164948e-06,
|
2248 |
+
"loss": 0.9829,
|
2249 |
+
"step": 320
|
2250 |
+
},
|
2251 |
+
{
|
2252 |
+
"epoch": 0.823076923076923,
|
2253 |
+
"grad_norm": 1.7778921127319336,
|
2254 |
+
"learning_rate": 1.8041237113402063e-06,
|
2255 |
+
"loss": 0.9229,
|
2256 |
+
"step": 321
|
2257 |
+
},
|
2258 |
+
{
|
2259 |
+
"epoch": 0.8256410256410256,
|
2260 |
+
"grad_norm": 1.792877197265625,
|
2261 |
+
"learning_rate": 1.7783505154639178e-06,
|
2262 |
+
"loss": 0.876,
|
2263 |
+
"step": 322
|
2264 |
+
},
|
2265 |
+
{
|
2266 |
+
"epoch": 0.8282051282051283,
|
2267 |
+
"grad_norm": 1.8950697183609009,
|
2268 |
+
"learning_rate": 1.7525773195876288e-06,
|
2269 |
+
"loss": 0.915,
|
2270 |
+
"step": 323
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.8307692307692308,
|
2274 |
+
"grad_norm": 1.911402940750122,
|
2275 |
+
"learning_rate": 1.7268041237113403e-06,
|
2276 |
+
"loss": 1.043,
|
2277 |
+
"step": 324
|
2278 |
+
},
|
2279 |
+
{
|
2280 |
+
"epoch": 0.8333333333333334,
|
2281 |
+
"grad_norm": 2.1029365062713623,
|
2282 |
+
"learning_rate": 1.7010309278350518e-06,
|
2283 |
+
"loss": 0.9243,
|
2284 |
+
"step": 325
|
2285 |
+
},
|
2286 |
+
{
|
2287 |
+
"epoch": 0.8358974358974359,
|
2288 |
+
"grad_norm": 2.052480936050415,
|
2289 |
+
"learning_rate": 1.675257731958763e-06,
|
2290 |
+
"loss": 1.2256,
|
2291 |
+
"step": 326
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"epoch": 0.8384615384615385,
|
2295 |
+
"grad_norm": 1.7406338453292847,
|
2296 |
+
"learning_rate": 1.6494845360824744e-06,
|
2297 |
+
"loss": 0.8804,
|
2298 |
+
"step": 327
|
2299 |
+
},
|
2300 |
+
{
|
2301 |
+
"epoch": 0.841025641025641,
|
2302 |
+
"grad_norm": 1.8102054595947266,
|
2303 |
+
"learning_rate": 1.6237113402061857e-06,
|
2304 |
+
"loss": 0.854,
|
2305 |
+
"step": 328
|
2306 |
+
},
|
2307 |
+
{
|
2308 |
+
"epoch": 0.8435897435897436,
|
2309 |
+
"grad_norm": 1.9868026971817017,
|
2310 |
+
"learning_rate": 1.597938144329897e-06,
|
2311 |
+
"loss": 0.8491,
|
2312 |
+
"step": 329
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.8461538461538461,
|
2316 |
+
"grad_norm": 1.774075984954834,
|
2317 |
+
"learning_rate": 1.5721649484536082e-06,
|
2318 |
+
"loss": 0.8457,
|
2319 |
+
"step": 330
|
2320 |
+
},
|
2321 |
+
{
|
2322 |
+
"epoch": 0.8487179487179487,
|
2323 |
+
"grad_norm": 1.8672053813934326,
|
2324 |
+
"learning_rate": 1.5463917525773197e-06,
|
2325 |
+
"loss": 1.0176,
|
2326 |
+
"step": 331
|
2327 |
+
},
|
2328 |
+
{
|
2329 |
+
"epoch": 0.8512820512820513,
|
2330 |
+
"grad_norm": 1.5850166082382202,
|
2331 |
+
"learning_rate": 1.520618556701031e-06,
|
2332 |
+
"loss": 0.6777,
|
2333 |
+
"step": 332
|
2334 |
+
},
|
2335 |
+
{
|
2336 |
+
"epoch": 0.8538461538461538,
|
2337 |
+
"grad_norm": 1.6745821237564087,
|
2338 |
+
"learning_rate": 1.4948453608247423e-06,
|
2339 |
+
"loss": 0.939,
|
2340 |
+
"step": 333
|
2341 |
+
},
|
2342 |
+
{
|
2343 |
+
"epoch": 0.8564102564102564,
|
2344 |
+
"grad_norm": 1.8641244173049927,
|
2345 |
+
"learning_rate": 1.4690721649484538e-06,
|
2346 |
+
"loss": 1.0,
|
2347 |
+
"step": 334
|
2348 |
+
},
|
2349 |
+
{
|
2350 |
+
"epoch": 0.8589743589743589,
|
2351 |
+
"grad_norm": 1.6371408700942993,
|
2352 |
+
"learning_rate": 1.4432989690721649e-06,
|
2353 |
+
"loss": 0.8037,
|
2354 |
+
"step": 335
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.8615384615384616,
|
2358 |
+
"grad_norm": 2.0685510635375977,
|
2359 |
+
"learning_rate": 1.4175257731958764e-06,
|
2360 |
+
"loss": 0.9287,
|
2361 |
+
"step": 336
|
2362 |
+
},
|
2363 |
+
{
|
2364 |
+
"epoch": 0.8641025641025641,
|
2365 |
+
"grad_norm": 1.8242462873458862,
|
2366 |
+
"learning_rate": 1.3917525773195878e-06,
|
2367 |
+
"loss": 0.8877,
|
2368 |
+
"step": 337
|
2369 |
+
},
|
2370 |
+
{
|
2371 |
+
"epoch": 0.8666666666666667,
|
2372 |
+
"grad_norm": 2.243830442428589,
|
2373 |
+
"learning_rate": 1.365979381443299e-06,
|
2374 |
+
"loss": 0.7764,
|
2375 |
+
"step": 338
|
2376 |
+
},
|
2377 |
+
{
|
2378 |
+
"epoch": 0.8692307692307693,
|
2379 |
+
"grad_norm": 2.188321590423584,
|
2380 |
+
"learning_rate": 1.3402061855670104e-06,
|
2381 |
+
"loss": 1.125,
|
2382 |
+
"step": 339
|
2383 |
+
},
|
2384 |
+
{
|
2385 |
+
"epoch": 0.8717948717948718,
|
2386 |
+
"grad_norm": 2.412721633911133,
|
2387 |
+
"learning_rate": 1.314432989690722e-06,
|
2388 |
+
"loss": 1.1016,
|
2389 |
+
"step": 340
|
2390 |
+
},
|
2391 |
+
{
|
2392 |
+
"epoch": 0.8743589743589744,
|
2393 |
+
"grad_norm": 2.149219512939453,
|
2394 |
+
"learning_rate": 1.288659793814433e-06,
|
2395 |
+
"loss": 1.1104,
|
2396 |
+
"step": 341
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.8769230769230769,
|
2400 |
+
"grad_norm": 1.603258490562439,
|
2401 |
+
"learning_rate": 1.2628865979381445e-06,
|
2402 |
+
"loss": 0.7148,
|
2403 |
+
"step": 342
|
2404 |
+
},
|
2405 |
+
{
|
2406 |
+
"epoch": 0.8794871794871795,
|
2407 |
+
"grad_norm": 1.7832096815109253,
|
2408 |
+
"learning_rate": 1.2371134020618557e-06,
|
2409 |
+
"loss": 0.9902,
|
2410 |
+
"step": 343
|
2411 |
+
},
|
2412 |
+
{
|
2413 |
+
"epoch": 0.882051282051282,
|
2414 |
+
"grad_norm": 1.8631786108016968,
|
2415 |
+
"learning_rate": 1.211340206185567e-06,
|
2416 |
+
"loss": 0.8569,
|
2417 |
+
"step": 344
|
2418 |
+
},
|
2419 |
+
{
|
2420 |
+
"epoch": 0.8846153846153846,
|
2421 |
+
"grad_norm": 1.6944712400436401,
|
2422 |
+
"learning_rate": 1.1855670103092783e-06,
|
2423 |
+
"loss": 0.7397,
|
2424 |
+
"step": 345
|
2425 |
+
},
|
2426 |
+
{
|
2427 |
+
"epoch": 0.8871794871794871,
|
2428 |
+
"grad_norm": 1.842955231666565,
|
2429 |
+
"learning_rate": 1.1597938144329898e-06,
|
2430 |
+
"loss": 0.8457,
|
2431 |
+
"step": 346
|
2432 |
+
},
|
2433 |
+
{
|
2434 |
+
"epoch": 0.8897435897435897,
|
2435 |
+
"grad_norm": 2.5506865978240967,
|
2436 |
+
"learning_rate": 1.134020618556701e-06,
|
2437 |
+
"loss": 0.9238,
|
2438 |
+
"step": 347
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.8923076923076924,
|
2442 |
+
"grad_norm": 2.157381534576416,
|
2443 |
+
"learning_rate": 1.1082474226804124e-06,
|
2444 |
+
"loss": 1.1855,
|
2445 |
+
"step": 348
|
2446 |
+
},
|
2447 |
+
{
|
2448 |
+
"epoch": 0.8948717948717949,
|
2449 |
+
"grad_norm": 1.835581660270691,
|
2450 |
+
"learning_rate": 1.0824742268041239e-06,
|
2451 |
+
"loss": 0.9375,
|
2452 |
+
"step": 349
|
2453 |
+
},
|
2454 |
+
{
|
2455 |
+
"epoch": 0.8974358974358975,
|
2456 |
+
"grad_norm": 2.591947078704834,
|
2457 |
+
"learning_rate": 1.0567010309278351e-06,
|
2458 |
+
"loss": 1.0088,
|
2459 |
+
"step": 350
|
2460 |
+
},
|
2461 |
+
{
|
2462 |
+
"epoch": 0.9,
|
2463 |
+
"grad_norm": 1.9977459907531738,
|
2464 |
+
"learning_rate": 1.0309278350515464e-06,
|
2465 |
+
"loss": 1.0576,
|
2466 |
+
"step": 351
|
2467 |
+
},
|
2468 |
+
{
|
2469 |
+
"epoch": 0.9025641025641026,
|
2470 |
+
"grad_norm": 1.7029050588607788,
|
2471 |
+
"learning_rate": 1.005154639175258e-06,
|
2472 |
+
"loss": 0.8643,
|
2473 |
+
"step": 352
|
2474 |
+
},
|
2475 |
+
{
|
2476 |
+
"epoch": 0.9051282051282051,
|
2477 |
+
"grad_norm": 1.6559293270111084,
|
2478 |
+
"learning_rate": 9.793814432989692e-07,
|
2479 |
+
"loss": 0.8652,
|
2480 |
+
"step": 353
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.9076923076923077,
|
2484 |
+
"grad_norm": 2.0177323818206787,
|
2485 |
+
"learning_rate": 9.536082474226805e-07,
|
2486 |
+
"loss": 1.0361,
|
2487 |
+
"step": 354
|
2488 |
+
},
|
2489 |
+
{
|
2490 |
+
"epoch": 0.9102564102564102,
|
2491 |
+
"grad_norm": 1.6591455936431885,
|
2492 |
+
"learning_rate": 9.278350515463919e-07,
|
2493 |
+
"loss": 0.8872,
|
2494 |
+
"step": 355
|
2495 |
+
},
|
2496 |
+
{
|
2497 |
+
"epoch": 0.9128205128205128,
|
2498 |
+
"grad_norm": 2.092712640762329,
|
2499 |
+
"learning_rate": 9.020618556701031e-07,
|
2500 |
+
"loss": 0.9644,
|
2501 |
+
"step": 356
|
2502 |
+
},
|
2503 |
+
{
|
2504 |
+
"epoch": 0.9153846153846154,
|
2505 |
+
"grad_norm": 1.7917448282241821,
|
2506 |
+
"learning_rate": 8.762886597938144e-07,
|
2507 |
+
"loss": 0.9399,
|
2508 |
+
"step": 357
|
2509 |
+
},
|
2510 |
+
{
|
2511 |
+
"epoch": 0.9179487179487179,
|
2512 |
+
"grad_norm": 1.9611492156982422,
|
2513 |
+
"learning_rate": 8.505154639175259e-07,
|
2514 |
+
"loss": 1.292,
|
2515 |
+
"step": 358
|
2516 |
+
},
|
2517 |
+
{
|
2518 |
+
"epoch": 0.9205128205128205,
|
2519 |
+
"grad_norm": 1.7951692342758179,
|
2520 |
+
"learning_rate": 8.247422680412372e-07,
|
2521 |
+
"loss": 0.9551,
|
2522 |
+
"step": 359
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.9230769230769231,
|
2526 |
+
"grad_norm": 1.8831959962844849,
|
2527 |
+
"learning_rate": 7.989690721649485e-07,
|
2528 |
+
"loss": 1.1973,
|
2529 |
+
"step": 360
|
2530 |
+
},
|
2531 |
+
{
|
2532 |
+
"epoch": 0.9256410256410257,
|
2533 |
+
"grad_norm": 1.9080712795257568,
|
2534 |
+
"learning_rate": 7.731958762886599e-07,
|
2535 |
+
"loss": 0.917,
|
2536 |
+
"step": 361
|
2537 |
+
},
|
2538 |
+
{
|
2539 |
+
"epoch": 0.9282051282051282,
|
2540 |
+
"grad_norm": 2.041674852371216,
|
2541 |
+
"learning_rate": 7.474226804123711e-07,
|
2542 |
+
"loss": 0.9111,
|
2543 |
+
"step": 362
|
2544 |
+
},
|
2545 |
+
{
|
2546 |
+
"epoch": 0.9307692307692308,
|
2547 |
+
"grad_norm": 1.8067349195480347,
|
2548 |
+
"learning_rate": 7.216494845360824e-07,
|
2549 |
+
"loss": 0.7915,
|
2550 |
+
"step": 363
|
2551 |
+
},
|
2552 |
+
{
|
2553 |
+
"epoch": 0.9333333333333333,
|
2554 |
+
"grad_norm": 1.733258843421936,
|
2555 |
+
"learning_rate": 6.958762886597939e-07,
|
2556 |
+
"loss": 0.8726,
|
2557 |
+
"step": 364
|
2558 |
+
},
|
2559 |
+
{
|
2560 |
+
"epoch": 0.9358974358974359,
|
2561 |
+
"grad_norm": 2.1133229732513428,
|
2562 |
+
"learning_rate": 6.701030927835052e-07,
|
2563 |
+
"loss": 0.9028,
|
2564 |
+
"step": 365
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.9384615384615385,
|
2568 |
+
"grad_norm": 1.8070833683013916,
|
2569 |
+
"learning_rate": 6.443298969072165e-07,
|
2570 |
+
"loss": 0.8071,
|
2571 |
+
"step": 366
|
2572 |
+
},
|
2573 |
+
{
|
2574 |
+
"epoch": 0.941025641025641,
|
2575 |
+
"grad_norm": 1.610521912574768,
|
2576 |
+
"learning_rate": 6.185567010309279e-07,
|
2577 |
+
"loss": 0.686,
|
2578 |
+
"step": 367
|
2579 |
+
},
|
2580 |
+
{
|
2581 |
+
"epoch": 0.9435897435897436,
|
2582 |
+
"grad_norm": 1.8273773193359375,
|
2583 |
+
"learning_rate": 5.927835051546392e-07,
|
2584 |
+
"loss": 1.042,
|
2585 |
+
"step": 368
|
2586 |
+
},
|
2587 |
+
{
|
2588 |
+
"epoch": 0.9461538461538461,
|
2589 |
+
"grad_norm": 1.6408607959747314,
|
2590 |
+
"learning_rate": 5.670103092783505e-07,
|
2591 |
+
"loss": 0.8584,
|
2592 |
+
"step": 369
|
2593 |
+
},
|
2594 |
+
{
|
2595 |
+
"epoch": 0.9487179487179487,
|
2596 |
+
"grad_norm": 1.950465440750122,
|
2597 |
+
"learning_rate": 5.412371134020619e-07,
|
2598 |
+
"loss": 0.9629,
|
2599 |
+
"step": 370
|
2600 |
+
},
|
2601 |
+
{
|
2602 |
+
"epoch": 0.9512820512820512,
|
2603 |
+
"grad_norm": 1.6559863090515137,
|
2604 |
+
"learning_rate": 5.154639175257732e-07,
|
2605 |
+
"loss": 0.7119,
|
2606 |
+
"step": 371
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.9538461538461539,
|
2610 |
+
"grad_norm": 1.497727394104004,
|
2611 |
+
"learning_rate": 4.896907216494846e-07,
|
2612 |
+
"loss": 0.71,
|
2613 |
+
"step": 372
|
2614 |
+
},
|
2615 |
+
{
|
2616 |
+
"epoch": 0.9564102564102565,
|
2617 |
+
"grad_norm": 1.7516483068466187,
|
2618 |
+
"learning_rate": 4.6391752577319593e-07,
|
2619 |
+
"loss": 0.7275,
|
2620 |
+
"step": 373
|
2621 |
+
},
|
2622 |
+
{
|
2623 |
+
"epoch": 0.958974358974359,
|
2624 |
+
"grad_norm": 1.8231966495513916,
|
2625 |
+
"learning_rate": 4.381443298969072e-07,
|
2626 |
+
"loss": 1.0664,
|
2627 |
+
"step": 374
|
2628 |
+
},
|
2629 |
+
{
|
2630 |
+
"epoch": 0.9615384615384616,
|
2631 |
+
"grad_norm": 2.928769826889038,
|
2632 |
+
"learning_rate": 4.123711340206186e-07,
|
2633 |
+
"loss": 0.7983,
|
2634 |
+
"step": 375
|
2635 |
+
},
|
2636 |
+
{
|
2637 |
+
"epoch": 0.9641025641025641,
|
2638 |
+
"grad_norm": 1.5636661052703857,
|
2639 |
+
"learning_rate": 3.8659793814432993e-07,
|
2640 |
+
"loss": 0.6655,
|
2641 |
+
"step": 376
|
2642 |
+
},
|
2643 |
+
{
|
2644 |
+
"epoch": 0.9666666666666667,
|
2645 |
+
"grad_norm": 1.7315055131912231,
|
2646 |
+
"learning_rate": 3.608247422680412e-07,
|
2647 |
+
"loss": 0.8994,
|
2648 |
+
"step": 377
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.9692307692307692,
|
2652 |
+
"grad_norm": 1.863347053527832,
|
2653 |
+
"learning_rate": 3.350515463917526e-07,
|
2654 |
+
"loss": 0.9229,
|
2655 |
+
"step": 378
|
2656 |
+
},
|
2657 |
+
{
|
2658 |
+
"epoch": 0.9717948717948718,
|
2659 |
+
"grad_norm": 1.6344797611236572,
|
2660 |
+
"learning_rate": 3.0927835051546394e-07,
|
2661 |
+
"loss": 0.915,
|
2662 |
+
"step": 379
|
2663 |
+
},
|
2664 |
+
{
|
2665 |
+
"epoch": 0.9743589743589743,
|
2666 |
+
"grad_norm": 1.7815521955490112,
|
2667 |
+
"learning_rate": 2.8350515463917527e-07,
|
2668 |
+
"loss": 1.002,
|
2669 |
+
"step": 380
|
2670 |
+
},
|
2671 |
+
{
|
2672 |
+
"epoch": 0.9769230769230769,
|
2673 |
+
"grad_norm": 1.689065933227539,
|
2674 |
+
"learning_rate": 2.577319587628866e-07,
|
2675 |
+
"loss": 0.8452,
|
2676 |
+
"step": 381
|
2677 |
+
},
|
2678 |
+
{
|
2679 |
+
"epoch": 0.9794871794871794,
|
2680 |
+
"grad_norm": 1.8653761148452759,
|
2681 |
+
"learning_rate": 2.3195876288659797e-07,
|
2682 |
+
"loss": 0.9282,
|
2683 |
+
"step": 382
|
2684 |
+
},
|
2685 |
+
{
|
2686 |
+
"epoch": 0.982051282051282,
|
2687 |
+
"grad_norm": 1.7302168607711792,
|
2688 |
+
"learning_rate": 2.061855670103093e-07,
|
2689 |
+
"loss": 0.6318,
|
2690 |
+
"step": 383
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.9846153846153847,
|
2694 |
+
"grad_norm": 1.8644577264785767,
|
2695 |
+
"learning_rate": 1.804123711340206e-07,
|
2696 |
+
"loss": 0.8018,
|
2697 |
+
"step": 384
|
2698 |
+
},
|
2699 |
+
{
|
2700 |
+
"epoch": 0.9871794871794872,
|
2701 |
+
"grad_norm": 1.725438117980957,
|
2702 |
+
"learning_rate": 1.5463917525773197e-07,
|
2703 |
+
"loss": 0.9722,
|
2704 |
+
"step": 385
|
2705 |
+
},
|
2706 |
+
{
|
2707 |
+
"epoch": 0.9897435897435898,
|
2708 |
+
"grad_norm": 2.536639928817749,
|
2709 |
+
"learning_rate": 1.288659793814433e-07,
|
2710 |
+
"loss": 1.0117,
|
2711 |
+
"step": 386
|
2712 |
+
},
|
2713 |
+
{
|
2714 |
+
"epoch": 0.9923076923076923,
|
2715 |
+
"grad_norm": 6.378511905670166,
|
2716 |
+
"learning_rate": 1.0309278350515465e-07,
|
2717 |
+
"loss": 1.0488,
|
2718 |
+
"step": 387
|
2719 |
+
},
|
2720 |
+
{
|
2721 |
+
"epoch": 0.9948717948717949,
|
2722 |
+
"grad_norm": 1.8261665105819702,
|
2723 |
+
"learning_rate": 7.731958762886598e-08,
|
2724 |
+
"loss": 0.9814,
|
2725 |
+
"step": 388
|
2726 |
+
},
|
2727 |
+
{
|
2728 |
+
"epoch": 0.9974358974358974,
|
2729 |
+
"grad_norm": 1.732452630996704,
|
2730 |
+
"learning_rate": 5.1546391752577325e-08,
|
2731 |
+
"loss": 0.7505,
|
2732 |
+
"step": 389
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 1.0,
|
2736 |
+
"grad_norm": 1.9269561767578125,
|
2737 |
+
"learning_rate": 2.5773195876288662e-08,
|
2738 |
+
"loss": 1.0332,
|
2739 |
+
"step": 390
|
2740 |
+
}
|
2741 |
+
],
|
2742 |
+
"logging_steps": 1.0,
|
2743 |
+
"max_steps": 390,
|
2744 |
+
"num_input_tokens_seen": 0,
|
2745 |
+
"num_train_epochs": 1,
|
2746 |
+
"save_steps": 1000,
|
2747 |
+
"stateful_callbacks": {
|
2748 |
+
"TrainerControl": {
|
2749 |
+
"args": {
|
2750 |
+
"should_epoch_stop": false,
|
2751 |
+
"should_evaluate": false,
|
2752 |
+
"should_log": false,
|
2753 |
+
"should_save": true,
|
2754 |
+
"should_training_stop": true
|
2755 |
+
},
|
2756 |
+
"attributes": {}
|
2757 |
+
}
|
2758 |
+
},
|
2759 |
+
"total_flos": 0.0,
|
2760 |
+
"train_batch_size": 1,
|
2761 |
+
"trial_name": null,
|
2762 |
+
"trial_params": null
|
2763 |
+
}
|
checkpoint-390/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d533dc63a1c358dd5f8c710590b95b45400195b129c56c2217d9b54ba19e8aa
|
3 |
+
size 7736
|
checkpoint-390/zero_to_fp32.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
+
exclude_frozen_parameters)
|
216 |
+
elif zero_stage == 3:
|
217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
+
exclude_frozen_parameters)
|
219 |
+
|
220 |
+
|
221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
+
return
|
224 |
+
|
225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
+
|
228 |
+
if debug:
|
229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
+
|
232 |
+
wanted_params = len(frozen_param_shapes)
|
233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
+
|
238 |
+
total_params = 0
|
239 |
+
total_numel = 0
|
240 |
+
for name, shape in frozen_param_shapes.items():
|
241 |
+
total_params += 1
|
242 |
+
unpartitioned_numel = shape.numel()
|
243 |
+
total_numel += unpartitioned_numel
|
244 |
+
|
245 |
+
state_dict[name] = frozen_param_fragments[name]
|
246 |
+
|
247 |
+
if debug:
|
248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
+
|
250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
+
|
252 |
+
|
253 |
+
def _has_callable(obj, fn):
|
254 |
+
attr = getattr(obj, fn, None)
|
255 |
+
return callable(attr)
|
256 |
+
|
257 |
+
|
258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
+
param_shapes = zero_model_states[0].param_shapes
|
260 |
+
|
261 |
+
# Reconstruction protocol:
|
262 |
+
#
|
263 |
+
# XXX: document this
|
264 |
+
|
265 |
+
if debug:
|
266 |
+
for i in range(world_size):
|
267 |
+
for j in range(len(fp32_flat_groups[0])):
|
268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
+
|
270 |
+
# XXX: memory usage doubles here (zero2)
|
271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
272 |
+
merged_single_partition_of_fp32_groups = []
|
273 |
+
for i in range(num_param_groups):
|
274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
+
avail_numel = sum(
|
278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
+
|
280 |
+
if debug:
|
281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
+
# not asserting if there is a mismatch due to possible padding
|
284 |
+
print(f"Have {avail_numel} numels to process.")
|
285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
+
|
287 |
+
# params
|
288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
+
# out-of-core computing solution
|
290 |
+
total_numel = 0
|
291 |
+
total_params = 0
|
292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
+
offset = 0
|
294 |
+
avail_numel = full_single_fp32_vector.numel()
|
295 |
+
for name, shape in shapes.items():
|
296 |
+
|
297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
+
total_numel += unpartitioned_numel
|
299 |
+
total_params += 1
|
300 |
+
|
301 |
+
if debug:
|
302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
+
offset += unpartitioned_numel
|
305 |
+
|
306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
+
align_to = 2 * world_size
|
311 |
+
|
312 |
+
def zero2_align(x):
|
313 |
+
return align_to * math.ceil(x / align_to)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
offset = zero2_align(offset)
|
319 |
+
avail_numel = zero2_align(avail_numel)
|
320 |
+
|
321 |
+
if debug:
|
322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
+
|
324 |
+
# Sanity check
|
325 |
+
if offset != avail_numel:
|
326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
+
|
328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
+
|
330 |
+
|
331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
+
exclude_frozen_parameters):
|
333 |
+
state_dict = OrderedDict()
|
334 |
+
|
335 |
+
# buffers
|
336 |
+
buffers = zero_model_states[0].buffers
|
337 |
+
state_dict.update(buffers)
|
338 |
+
if debug:
|
339 |
+
print(f"added {len(buffers)} buffers")
|
340 |
+
|
341 |
+
if not exclude_frozen_parameters:
|
342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
+
|
344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
+
|
346 |
+
# recover shared parameters
|
347 |
+
for pair in zero_model_states[0].shared_params:
|
348 |
+
if pair[1] in state_dict:
|
349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
+
|
351 |
+
return state_dict
|
352 |
+
|
353 |
+
|
354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
+
remainder = unpartitioned_numel % world_size
|
356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
+
return partitioned_numel, padding_numel
|
359 |
+
|
360 |
+
|
361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
+
return
|
364 |
+
|
365 |
+
if debug:
|
366 |
+
for i in range(world_size):
|
367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
+
|
370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
+
wanted_params = len(frozen_param_shapes)
|
372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
+
|
377 |
+
total_params = 0
|
378 |
+
total_numel = 0
|
379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
+
total_params += 1
|
381 |
+
unpartitioned_numel = shape.numel()
|
382 |
+
total_numel += unpartitioned_numel
|
383 |
+
|
384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
+
|
387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
+
|
389 |
+
if debug:
|
390 |
+
print(
|
391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
+
)
|
393 |
+
|
394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
+
|
396 |
+
|
397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
+
param_shapes = zero_model_states[0].param_shapes
|
399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
402 |
+
|
403 |
+
# merge list of dicts, preserving order
|
404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
+
|
406 |
+
if debug:
|
407 |
+
for i in range(world_size):
|
408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
+
|
410 |
+
wanted_params = len(param_shapes)
|
411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
+
# not asserting if there is a mismatch due to possible padding
|
413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
+
|
417 |
+
# params
|
418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
+
# out-of-core computing solution
|
420 |
+
offset = 0
|
421 |
+
total_numel = 0
|
422 |
+
total_params = 0
|
423 |
+
for name, shape in param_shapes.items():
|
424 |
+
|
425 |
+
unpartitioned_numel = shape.numel()
|
426 |
+
total_numel += unpartitioned_numel
|
427 |
+
total_params += 1
|
428 |
+
|
429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
+
|
431 |
+
if debug:
|
432 |
+
print(
|
433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
+
)
|
435 |
+
|
436 |
+
# XXX: memory usage doubles here
|
437 |
+
state_dict[name] = torch.cat(
|
438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
+
offset += partitioned_numel
|
441 |
+
|
442 |
+
offset *= world_size
|
443 |
+
|
444 |
+
# Sanity check
|
445 |
+
if offset != avail_numel:
|
446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
+
|
448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
+
|
450 |
+
|
451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
+
exclude_frozen_parameters):
|
453 |
+
state_dict = OrderedDict()
|
454 |
+
|
455 |
+
# buffers
|
456 |
+
buffers = zero_model_states[0].buffers
|
457 |
+
state_dict.update(buffers)
|
458 |
+
if debug:
|
459 |
+
print(f"added {len(buffers)} buffers")
|
460 |
+
|
461 |
+
if not exclude_frozen_parameters:
|
462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
+
|
464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
+
|
466 |
+
# recover shared parameters
|
467 |
+
for pair in zero_model_states[0].shared_params:
|
468 |
+
if pair[1] in state_dict:
|
469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
+
|
471 |
+
return state_dict
|
472 |
+
|
473 |
+
|
474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
+
"""
|
476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
+
via a model hub.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
- pytorch ``state_dict``
|
487 |
+
|
488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
+
the checkpoint.
|
491 |
+
|
492 |
+
A typical usage might be ::
|
493 |
+
|
494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
+
# do the training and checkpoint saving
|
496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
+
model = model.cpu() # move to cpu
|
498 |
+
model.load_state_dict(state_dict)
|
499 |
+
# submit to model hub or save the model to share with others
|
500 |
+
|
501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
+
|
505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
+
|
507 |
+
"""
|
508 |
+
if tag is None:
|
509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
+
if os.path.isfile(latest_path):
|
511 |
+
with open(latest_path, 'r') as fd:
|
512 |
+
tag = fd.read().strip()
|
513 |
+
else:
|
514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
+
|
516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
+
|
518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
+
|
521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
+
|
523 |
+
|
524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
+
"""
|
526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
+
"""
|
535 |
+
|
536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
538 |
+
torch.save(state_dict, output_file)
|
539 |
+
|
540 |
+
|
541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
+
"""
|
543 |
+
1. Put the provided model to cpu
|
544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
+
3. Load it into the provided model
|
546 |
+
|
547 |
+
Args:
|
548 |
+
- ``model``: the model object to update
|
549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
+
|
552 |
+
Returns:
|
553 |
+
- ``model`: modified model
|
554 |
+
|
555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
+
conveniently placed for you in the checkpoint folder.
|
558 |
+
|
559 |
+
A typical usage might be ::
|
560 |
+
|
561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
+
# submit to model hub or save the model to share with others
|
564 |
+
|
565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
+
|
569 |
+
"""
|
570 |
+
logger.info(f"Extracting fp32 weights")
|
571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
+
|
573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
574 |
+
model = model.cpu()
|
575 |
+
model.load_state_dict(state_dict, strict=False)
|
576 |
+
|
577 |
+
return model
|
578 |
+
|
579 |
+
|
580 |
+
if __name__ == "__main__":
|
581 |
+
|
582 |
+
parser = argparse.ArgumentParser()
|
583 |
+
parser.add_argument("checkpoint_dir",
|
584 |
+
type=str,
|
585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
+
parser.add_argument(
|
587 |
+
"output_file",
|
588 |
+
type=str,
|
589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
+
parser.add_argument("-t",
|
591 |
+
"--tag",
|
592 |
+
type=str,
|
593 |
+
default=None,
|
594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
+
args = parser.parse_args()
|
598 |
+
|
599 |
+
debug = args.debug
|
600 |
+
|
601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
+
args.output_file,
|
603 |
+
tag=args.tag,
|
604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/share/chaofan/code/IR-Studio-up/online_test/finetune_result/medical_huatuo/retriever_round2",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 8194,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float16",
|
24 |
+
"transformers_version": "4.44.2",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:855b4280f2d306c83c3ecfddf1ddbaae1d9032d4b20f51853faaa0d6a16c0f77
|
3 |
+
size 1135554344
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33cd99e33ce09bdd8a6136fddfe90a1c47f85bafedf7309d0eecc19012d43586
|
3 |
+
size 17082897
|
tokenizer_config.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 8192,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"stride": 0,
|
55 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
56 |
+
"truncation_side": "right",
|
57 |
+
"truncation_strategy": "longest_first",
|
58 |
+
"unk_token": "<unk>"
|
59 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d533dc63a1c358dd5f8c710590b95b45400195b129c56c2217d9b54ba19e8aa
|
3 |
+
size 7736
|