cgifbribcgfbi commited on
Commit
7260c09
·
verified ·
1 Parent(s): 27b5295

Model save

Browse files
Files changed (1) hide show
  1. README.md +148 -0
README.md ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.1
4
+ base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - dset_comp3.0_sortpatent_count_pat400_in5_num5000_llama8b_5000.jsonl
10
+ model-index:
11
+ - name: Meta-Llama-3.1-8B-Instruct-abliterated-chem-claude-5-comp3-sort-pate-self
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.9.2`
22
+ ```yaml
23
+ base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
24
+ load_in_8bit: false
25
+ load_in_4bit: true
26
+ adapter: qlora
27
+ wandb_name: Meta-Llama-3.1-8B-Instruct-abliterated-chem-claude-5-comp3-sort-pate-self
28
+ output_dir: ./outputs/out/Meta-Llama-3.1-8B-Instruct-abliterated-chem-claude-5-comp3-sort-pate-self
29
+ hub_model_id: cgifbribcgfbi/Meta-Llama-3.1-8B-Instruct-abliterated-chem-claude-5-comp3-sort-pate-self
30
+
31
+ tokenizer_type: AutoTokenizer
32
+ push_dataset_to_hub:
33
+ strict: false
34
+
35
+ datasets:
36
+ - path: dset_comp3.0_sortpatent_count_pat400_in5_num5000_llama8b_5000.jsonl
37
+ type: chat_template
38
+ field_messages: messages
39
+
40
+ dataset_prepared_path: last_run_prepared
41
+ # val_set_size: 0.05
42
+ # eval_sample_packing: False
43
+ save_safetensors: true
44
+
45
+ sequence_len: 6800
46
+ sample_packing: true
47
+ pad_to_sequence_len: true
48
+
49
+ lora_r: 64
50
+ lora_alpha: 32
51
+ lora_dropout: 0.05
52
+ lora_target_modules:
53
+ lora_target_linear: true
54
+
55
+ wandb_mode:
56
+ wandb_project: finetune-sweep
57
+ wandb_entity: gpoisjgqetpadsfke
58
+ wandb_watch:
59
+ wandb_run_id:
60
+ wandb_log_model:
61
+
62
+ gradient_accumulation_steps: 1
63
+ micro_batch_size: 4 # This will be automatically adjusted based on available GPU memory
64
+ num_epochs: 4
65
+ optimizer: adamw_torch_fused
66
+ lr_scheduler: cosine
67
+ learning_rate: 0.00002
68
+
69
+ train_on_inputs: false
70
+ group_by_length: true
71
+ bf16: true
72
+ tf32: true
73
+
74
+ gradient_checkpointing: true
75
+ gradient_checkpointing_kwargs:
76
+ use_reentrant: true
77
+ logging_steps: 1
78
+ flash_attention: true
79
+
80
+ warmup_steps: 10
81
+ evals_per_epoch: 3
82
+ saves_per_epoch: 1
83
+ weight_decay: 0.01
84
+ fsdp:
85
+ - full_shard
86
+ - auto_wrap
87
+ fsdp_config:
88
+ fsdp_limit_all_gathers: true
89
+ fsdp_sync_module_states: true
90
+ fsdp_offload_params: false
91
+ fsdp_use_orig_params: false
92
+ fsdp_cpu_ram_efficient_loading: true
93
+ fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
94
+ fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
95
+ fsdp_state_dict_type: FULL_STATE_DICT
96
+ fsdp_sharding_strategy: FULL_SHARD
97
+ special_tokens:
98
+ pad_token: <|finetune_right_pad_id|>
99
+
100
+ ```
101
+
102
+ </details><br>
103
+
104
+ # Meta-Llama-3.1-8B-Instruct-abliterated-chem-claude-5-comp3-sort-pate-self
105
+
106
+ This model is a fine-tuned version of [mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated) on the dset_comp3.0_sortpatent_count_pat400_in5_num5000_llama8b_5000.jsonl dataset.
107
+
108
+ ## Model description
109
+
110
+ More information needed
111
+
112
+ ## Intended uses & limitations
113
+
114
+ More information needed
115
+
116
+ ## Training and evaluation data
117
+
118
+ More information needed
119
+
120
+ ## Training procedure
121
+
122
+ ### Training hyperparameters
123
+
124
+ The following hyperparameters were used during training:
125
+ - learning_rate: 2e-05
126
+ - train_batch_size: 4
127
+ - eval_batch_size: 4
128
+ - seed: 42
129
+ - distributed_type: multi-GPU
130
+ - num_devices: 4
131
+ - total_train_batch_size: 16
132
+ - total_eval_batch_size: 16
133
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
134
+ - lr_scheduler_type: cosine
135
+ - lr_scheduler_warmup_steps: 10
136
+ - num_epochs: 4.0
137
+
138
+ ### Training results
139
+
140
+
141
+
142
+ ### Framework versions
143
+
144
+ - PEFT 0.15.2
145
+ - Transformers 4.51.3
146
+ - Pytorch 2.6.0+cu124
147
+ - Datasets 3.5.1
148
+ - Tokenizers 0.21.1