--- library_name: peft license: llama3.1 base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated tags: - axolotl - generated_from_trainer datasets: - dset_comp3.0_sortpatent_count_pat400_in5_5000.jsonl model-index: - name: alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.9.1` ```yaml base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated load_in_8bit: false load_in_4bit: true adapter: qlora wandb_name: Meta-Llama-3.1-_outputs_axolotl_ft_alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000 output_dir: ./outputs/out/Meta-Llama-3.1-_outputs_axolotl_ft_alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000 hub_model_id: cgifbribcgfbi/alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000 tokenizer_type: AutoTokenizer push_dataset_to_hub: strict: false datasets: - path: dset_comp3.0_sortpatent_count_pat400_in5_5000.jsonl type: chat_template field_messages: messages dataset_prepared_path: last_run_prepared val_set_size: 0.04 save_safetensors: true sequence_len: 2700 sample_packing: true pad_to_sequence_len: true lora_r: 64 lora_alpha: 32 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true wandb_mode: wandb_project: finetune-sweep wandb_entity: gpoisjgqetpadsfke wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 # This will be automatically adjusted based on available GPU memory num_epochs: 4 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: true bf16: true tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true logging_steps: 1 flash_attention: true warmup_steps: 10 evals_per_epoch: 3 saves_per_epoch: 1 weight_decay: 0.01 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: false fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|finetune_right_pad_id|> ```

# alpha32_r64_lr0.00002_Meta-Llama-3.1-_dset_comp3.0_sortpatent_count_pat400_in5_5000 This model is a fine-tuned version of [mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated) on the dset_comp3.0_sortpatent_count_pat400_in5_5000.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.4583 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7 | 0.0061 | 1 | 0.8766 | | 0.6414 | 0.3354 | 55 | 0.6293 | | 0.5608 | 0.6707 | 110 | 0.5473 | | 0.4733 | 1.0061 | 165 | 0.5161 | | 0.5142 | 1.3415 | 220 | 0.4954 | | 0.4771 | 1.6768 | 275 | 0.4824 | | 0.423 | 2.0122 | 330 | 0.4750 | | 0.4375 | 2.3476 | 385 | 0.4676 | | 0.4311 | 2.6829 | 440 | 0.4630 | | 0.4019 | 3.0183 | 495 | 0.4620 | | 0.4726 | 3.3537 | 550 | 0.4589 | | 0.4677 | 3.6890 | 605 | 0.4583 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1