File size: 4,546 Bytes
c166459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fc0fd1
c166459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
---
language:
- en
license: apache-2.0
library_name: exllamav2
base_model:
  - arcee-ai/Homunculus
tags:
- distillation
- /think
- /nothink
- reasoning-transfer
- arcee-ai
---
# Homunculus-12B-exl2
Original model: [Homunculus](https://huggingface.co/arcee-ai/Homunculus) by [Arcee AI](https://huggingface.co/arcee-ai)  
Based on: [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) by [Mistral AI](https://huggingface.co/mistralai) and [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) by [Qwen](https://huggingface.co/Qwen)  

## Quants
[4bpw h6 (main)](https://huggingface.co/cgus/Homunculus-exl2/tree/main)  
[4.5bpw h6](https://huggingface.co/cgus/Homunculus-exl2/tree/4.5bpw-h6)  
[5bpw h6](https://huggingface.co/cgus/Homunculus-exl2/tree/5bpw-h6)  
[6bpw h6](https://huggingface.co/cgus/Homunculus-exl2/tree/6bpw-h6)  
[8bpw h8](https://huggingface.co/cgus/Homunculus-exl2/tree/8bpw-h8)  

## Quantization notes
Made with Exllamav2 0.3.1 with default dataset.  
These quants can be used with RTX GPU (Windows) or RTX/ROCm GPUs (Linux) with TabbyAPI or Text-Generation-WebUI.  
Ensure you have enough VRAM to use it. I used to run 6bpw Mistral-Nemo quants with 12GB VRAM at 16k context/Q6 or Q4 cache.  
If you have old GPUs (e.g. GTX/P40) or low VRAM, try using GGUF quants instead.
# Original model card
![Homunculus Logo](https://huggingface.co/arcee-ai/Homunculus/resolve/main/logo.jpg)

# Arcee **Homunculus-12B**

**Homunculus** is a 12 billion-parameter instruction model distilled from **Qwen3-235B** onto the **Mistral-Nemo** backbone.
It was purpose-built to preserve Qwen’s two-mode interaction style—`/think` (deliberate chain-of-thought) and `/nothink` (concise answers)—while running on a single consumer GPU.

---

## ✨ What’s special?

| Feature                           | Detail                                                                                                                                               |
| --------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Reasoning-trace transfer**      | Instead of copying just final probabilities, we align *full* logit trajectories, yielding more faithful reasoning.        |
| **Total-Variation-Distance loss** | To better match the teacher’s confidence distribution and smooth the loss landscape. |
| **Tokenizer replacement**         | The original Mistral tokenizer was swapped for Qwen3's tokenizer.                          |
| **Dual interaction modes**        | Use `/think` when you want transparent step-by-step reasoning (good for analysis & debugging). Use `/nothink` for terse, production-ready answers. Most reliable in the system role field.   |                    |

---

## Benchmark results

| Benchmark | Score |
| --------- | ----- |
| GPQADiamond (average of 3) | 57.1% |
| mmlu | 67.5% |

## 🔧 Quick Start

```python
from transformers import AutoTokenizer, AutoModelForCausalLM

model_id = "arcee-ai/Homunculus"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id, 
    torch_dtype="auto",
    device_map="auto"
)

# /think mode - Chain-of-thought reasoning
messages = [
    {"role": "system", "content": "You are a helpful assistant. /think"},
    {"role": "user", "content": "Why is the sky blue?"},
]
output = model.generate(
    tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt"),
    max_new_tokens=512,
    temperature=0.7
)
print(tokenizer.decode(output[0], skip_special_tokens=True))

# /nothink mode - Direct answers
messages = [
    {"role": "system", "content": "You are a helpful assistant. /nothink"},
    {"role": "user", "content": "Summarize the plot of Hamlet in two sentences."},
]
output = model.generate(
    tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt"),
    max_new_tokens=128,
    temperature=0.7
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```

## 💡 Intended Use & Limitations

Homunculus is designed for:

* **Research** on reasoning-trace distillation, Logit Imitation, and mode-switchable assistants.
* **Lightweight production** deployments that need strong reasoning at <12 GB VRAM.

### Known limitations

* May inherit biases from the Qwen3 teacher and internet-scale pretraining data.
* Long-context (>32 k tokens) use is experimental—expect latency & memory overhead.

---