File size: 4,546 Bytes
c166459 5fc0fd1 c166459 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
language:
- en
license: apache-2.0
library_name: exllamav2
base_model:
- arcee-ai/Homunculus
tags:
- distillation
- /think
- /nothink
- reasoning-transfer
- arcee-ai
---
# Homunculus-12B-exl2
Original model: [Homunculus](https://huggingface.co/arcee-ai/Homunculus) by [Arcee AI](https://huggingface.co/arcee-ai)
Based on: [Mistral-Nemo-Base-2407](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407) by [Mistral AI](https://huggingface.co/mistralai) and [Qwen3-235B-A22B](https://huggingface.co/Qwen/Qwen3-235B-A22B) by [Qwen](https://huggingface.co/Qwen)
## Quants
[4bpw h6 (main)](https://huggingface.co/cgus/Homunculus-exl2/tree/main)
[4.5bpw h6](https://huggingface.co/cgus/Homunculus-exl2/tree/4.5bpw-h6)
[5bpw h6](https://huggingface.co/cgus/Homunculus-exl2/tree/5bpw-h6)
[6bpw h6](https://huggingface.co/cgus/Homunculus-exl2/tree/6bpw-h6)
[8bpw h8](https://huggingface.co/cgus/Homunculus-exl2/tree/8bpw-h8)
## Quantization notes
Made with Exllamav2 0.3.1 with default dataset.
These quants can be used with RTX GPU (Windows) or RTX/ROCm GPUs (Linux) with TabbyAPI or Text-Generation-WebUI.
Ensure you have enough VRAM to use it. I used to run 6bpw Mistral-Nemo quants with 12GB VRAM at 16k context/Q6 or Q4 cache.
If you have old GPUs (e.g. GTX/P40) or low VRAM, try using GGUF quants instead.
# Original model card

# Arcee **Homunculus-12B**
**Homunculus** is a 12 billion-parameter instruction model distilled from **Qwen3-235B** onto the **Mistral-Nemo** backbone.
It was purpose-built to preserve Qwen’s two-mode interaction style—`/think` (deliberate chain-of-thought) and `/nothink` (concise answers)—while running on a single consumer GPU.
---
## ✨ What’s special?
| Feature | Detail |
| --------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- |
| **Reasoning-trace transfer** | Instead of copying just final probabilities, we align *full* logit trajectories, yielding more faithful reasoning. |
| **Total-Variation-Distance loss** | To better match the teacher’s confidence distribution and smooth the loss landscape. |
| **Tokenizer replacement** | The original Mistral tokenizer was swapped for Qwen3's tokenizer. |
| **Dual interaction modes** | Use `/think` when you want transparent step-by-step reasoning (good for analysis & debugging). Use `/nothink` for terse, production-ready answers. Most reliable in the system role field. | |
---
## Benchmark results
| Benchmark | Score |
| --------- | ----- |
| GPQADiamond (average of 3) | 57.1% |
| mmlu | 67.5% |
## 🔧 Quick Start
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "arcee-ai/Homunculus"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto"
)
# /think mode - Chain-of-thought reasoning
messages = [
{"role": "system", "content": "You are a helpful assistant. /think"},
{"role": "user", "content": "Why is the sky blue?"},
]
output = model.generate(
tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt"),
max_new_tokens=512,
temperature=0.7
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
# /nothink mode - Direct answers
messages = [
{"role": "system", "content": "You are a helpful assistant. /nothink"},
{"role": "user", "content": "Summarize the plot of Hamlet in two sentences."},
]
output = model.generate(
tokenizer.apply_chat_template(messages, tokenize=True, return_tensors="pt"),
max_new_tokens=128,
temperature=0.7
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## 💡 Intended Use & Limitations
Homunculus is designed for:
* **Research** on reasoning-trace distillation, Logit Imitation, and mode-switchable assistants.
* **Lightweight production** deployments that need strong reasoning at <12 GB VRAM.
### Known limitations
* May inherit biases from the Qwen3 teacher and internet-scale pretraining data.
* Long-context (>32 k tokens) use is experimental—expect latency & memory overhead.
---
|