File size: 7,432 Bytes
7d0e4fe
 
68094ff
7d0e4fe
68094ff
7d0e4fe
68094ff
 
 
 
 
 
 
 
 
 
 
 
7d0e4fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
license: mit
library_name: exllamav2
base_model:
- ByteDance-Seed/Seed-Coder-8B-Instruct
---
# Seed-Coder-8B-Instruct-exl2
Original model: [Seed-Coder-8B-Instruct](https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Instruct) by [ByteDance Seed](https://huggingface.co/ByteDance-Seed)
## Quants
[4bpw h6 (main)](https://huggingface.co/cgus/Seed-Coder-8B-Instruct-exl2/tree/main)  
[4.5bpw h6](https://huggingface.co/cgus/Seed-Coder-8B-Instruct-exl2/tree/4.5bpw-h6)  
[5bpw h6](https://huggingface.co/cgus/Seed-Coder-8B-Instruct-exl2/tree/5bpw-h6)  
[6bpw h6](https://huggingface.co/cgus/Seed-Coder-8B-Instruct-exl2/tree/6bpw-h6)  
[8bpw h8](https://huggingface.co/cgus/Seed-Coder-8B-Instruct-exl2/tree/8bpw-h8)  
## Quantization notes
Made with Exllamav2 0.2.9 dev with default dataset.  
Quants can be used with RTX GPU (Windows) or RTX/ROCm (Linux) with TabbyAPI or Text-Generation-WebUI.
# Original model card
# Seed-Coder-8B-Instruct

<div align="left" style="line-height: 1;">
  <a href="https://bytedance-seed-coder.github.io/" target="_blank" style="margin: 2px;">
    <img alt="Homepage" src="https://img.shields.io/badge/Seed--Coder-Homepage-a468fe?color=a468fe&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>

  <a href="https://github.com/ByteDance-Seed/Seed-Coder/blob/master/Seed-Coder.pdf" target="_blank" style="margin: 2px;">
    <img alt="Technical Report" src="https://img.shields.io/badge/(upcoming)-Technical%20Report-brightgreen?logo=arxiv&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
  
  <a href="https://huggingface.co/ByteDance-Seed" target="_blank" style="margin: 2px;">
      <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ByteDance%20Seed-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
  
  <a href="https://github.com/ByteDance-Seed/Seed-Coder/blob/master/LICENSE" style="margin: 2px;">
      <img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?color=f5de53&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>


## Introduction
We are thrilled to introduce Seed-Coder, a powerful, transparent, and parameter-efficient family of open-source code models at the 8B scale, featuring base, instruct, and reasoning variants. Seed-Coder contributes to promote the evolution of open code models through the following highlights.

- **Model-centric:** Seed-Coder predominantly leverages LLMs instead of hand-crafted rules for code data filtering, minimizing manual effort in pretraining data construction.
- **Transparent:** We openly share detailed insights into our model-centric data pipeline, including methods for curating GitHub data, commits data, and code-related web data.
- **Powerful:** Seed-Coder achieves state-of-the-art performance among open-source models of comparable size across a diverse range of coding tasks.

<p align="center">
  <img width="100%" src="imgs/seed-coder_intro_performance.jpg">
</p>

This repo contains the **Seed-Coder-8B-Instruct** model, which has the following features:
- Type: Causal language models
- Training Stage: Pretraining & Post-training
- Data Source: Public datasets, synthetic data
- Context Length: 32,768


## Model Downloads
| Model Name                  | Length | Download   |    Notes |
|---------------------------------------------------------|--------|------------------------------------|-----------------------|
| Seed-Coder-8B-Base           | 32K    | 🤗 [Model](https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base)   |  Pretrained on our model-centric code data.  |
| 👉 **Seed-Coder-8B-Instruct**  | 32K    | 🤗 [Model](https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Instruct)   |  Instruction-tuned for alignment with user intent. |
| Seed-Coder-8B-Reasoning            | 32K    | 🤗 [Model](https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Reasoning)   |  RL trained to boost reasoning capabilities.  |

## Requirements
You will need to install the latest versions of `transformers` and `accelerate`:

```bash
pip install -U transformers accelerate
```

## Quickstart

Here is a simple example demonstrating how to load the model and generate code using the Hugging Face `pipeline` API:

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "ByteDance-Seed/Seed-Coder-8B-Instruct"

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)

messages = [
    {"role": "user", "content": "Write a quick sort algorithm."},
]

input_ids = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    return_tensors="pt",
    add_generation_prompt=True,  
).to(model.device)

outputs = model.generate(input_ids, max_new_tokens=512)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
print(response)

```

## Evaluation

Seed-Coder-8B-Instruct has been evaluated on a wide range of coding tasks, including code generation, code reasoning, code editing, and software engineering, achieving state-of-the-art performance among ~8B open-source models.

|             Model             | HumanEval | MBPP | MHPP | BigCodeBench (Full) | BigCodeBench (Hard) | LiveCodeBench (2410 – 2502) |
|:-----------------------------:|:---------:|:----:|:----:|:-------------------:|:-------------------:|:-------------------------:|
|     CodeLlama-7B-Instruct     |    40.9   | 54.0 |  6.7 |         21.9        |         3.4         |            3.6            |
|  DeepSeek-Coder-6.7B-Instruct |    74.4   | 74.9 | 20.0 |         35.5        |         10.1        |            9.6            |
|      CodeQwen1.5-7B-Chat      |    83.5   | 77.7 | 17.6 |         39.6        |         18.9        |            3.0            |
|        Yi-Coder-9B-Chat       |    82.3   | 82.0 | 26.7 |         38.1        |         11.5        |            17.5           |
|     Llama-3.1-8B-Instruct     |    68.3   | 70.1 | 17.1 |         36.6        |         13.5        |            11.5           |
|     OpenCoder-8B-Instruct     |    83.5   | 79.1 | 30.5 |         40.3        |         16.9        |            17.1           |
|   Qwen2.5-Coder-7B-Instruct   |    88.4   | 82.0 | 26.7 |         41.0        |         18.2        |            17.3           |
|            Qwen3-8B           |    84.8   | 77.0 | 32.8 |         51.7        |         23.0        |            23.5           |
| Seed-Coder-8B-Instruct        |    84.8   | 85.2 | 36.2 |         53.3        |         20.5        |            24.7           |


For detailed benchmark performance, please refer to our [📑 Technical Report](https://github.com/ByteDance-Seed/Seed-Coder/blob/master/Seed-Coder.pdf).

## License

This project is licensed under the MIT License. See the [LICENSE file](https://github.com/ByteDance-Seed/Seed-Coder/blob/master/LICENSE) for details.

<!-- ## Citation

If you find our work helpful, feel free to give us a cite.

```
@article{zhang2025seedcoder,
    title={Seed-Coder: Let the Code Model Curate Data for Itself},
    author={Xxx},
    year={2025},
    eprint={2504.xxxxx},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    url={https://arxiv.org/abs/xxxx.xxxxx}, 
}
``` -->