Text Generation
Transformers
Safetensors
mt5
text2text-generation
File size: 2,037 Bytes
2149c43
 
79bb9db
01c4c52
73986b2
01c4c52
 
 
 
 
 
 
 
 
 
 
 
2149c43
 
 
 
7944776
2149c43
 
 
 
 
 
7944776
2149c43
7944776
 
 
79bb9db
7944776
2149c43
 
 
7944776
2149c43
 
 
7944776
2149c43
 
 
7944776
2149c43
 
 
7944776
2149c43
 
 
 
 
7944776
 
2149c43
7944776
2149c43
7944776
 
2149c43
7944776
 
 
 
 
 
 
2149c43
7944776
 
 
 
 
2149c43
7944776
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: openrail++
datasets:
- textdetox/multilingual_paradetox
- chameleon-lizard/synthetic-multilingual-paradetox
language:
- en
- ru
- uk
- am
- de
- es
- zh
- ar
- hi
pipeline_tag: text2text-generation
---

# Model Card for Model ID

Finetune of the mt0-xl model for text toxification task.


## Model Details

### Model Description

This is a finetune of mt0-xl model for text toxification task. Can be used for synthetic data generation from non-toxic examples.

- **Developed by:** Nikita Sushko
- **Model type:** mt5-xl
- **Language(s) (NLP):** English, Russian, Ukranian, Amharic, German, Spanish, Chinese, Arabic, Hindi
- **License:** OpenRail++
- **Finetuned from model:** mt0-xl

## Uses

This model is intended to be used for synthetic data generation from non-toxic examples.

### Direct Use

The model may be directly used for text toxification tasks.

### Out-of-Scope Use

The model may be used for generating toxic versions of sentences.

## Bias, Risks, and Limitations

Since this model generates toxic versions of sentences, it may be used to increase toxicity of generated texts.

## How to Get Started with the Model

Use the code below to get started with the model.

```python
import transformers

checkpoint = 'chameleon-lizard/tox-mt0-xl'

tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
model = transformers.AutoModelForSeq2SeqLM.from_pretrained(checkpoint, torch_dtype='auto', device_map="auto")

pipe = transformers.pipeline(
    "text2text-generation", 
    model=model, 
    tokenizer=tokenizer, 
    max_length=512,
    truncation=True,
)

language = 'English'
text = "That's dissapointing."
print(pipe('Rewrite the following text in {language} the most toxic and obscene version possible: {text}')[0]['generated_text'])
# Resulting text: "That's dissapointing, you stupid ass bitch."
```

Be sure to prompt with the provided prompt format for the best performance. Failure to include target language may result in model responses be in random language.