File size: 14,228 Bytes
ed4ea6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761114f
ed4ea6c
 
 
 
 
 
 
 
 
 
 
761114f
ed4ea6c
 
761114f
ed4ea6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761114f
ed4ea6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761114f
ed4ea6c
 
 
 
 
761114f
ed4ea6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import copy
import json
import os.path
import re
import shutil
import inspect
from typing import Optional, Union

import torch
import torch.nn.functional as F
from transformers import LlamaConfig
from transformers.loss.loss_utils import LOSS_MAPPING
from transformers.modeling_outputs import CausalLMOutput
from transformers.utils.hub import cached_file, get_checkpoint_shard_files
from transformers.utils import (
    SAFE_WEIGHTS_NAME,
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
)
from transformers.modeling_utils import unwrap_model, logger
from functools import partial
from safetensors.torch import load_file as safe_load_file

try:
    from flash_attn.models.gpt import GPTLMHeadModel
except ImportError:
    GPTLMHeadModel = None

try:
    from flash_attn.models.llama import llama_config_to_gpt2_config, inv_remap_state_dict_hf_llama
except ImportError:
    llama_config_to_gpt2_config = None
    inv_remap_state_dict_hf_llama = None


def state_dict_from_pretrained(model_name, checkpoint_path: str = "", device=None, dtype=None, **kwargs):
    """
    code modified from: https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/pretrained.py
    """

    # If not fp32, then we don't want to load directly to the GPU
    mapped_device = "cpu" if dtype not in [torch.float32, None] else device
    is_sharded = False
    load_safe = False

    # Try loading from HF hub instead of from local files
    resolved_archive_file = cached_file(model_name, os.path.join(checkpoint_path, WEIGHTS_NAME),
                                        _raise_exceptions_for_missing_entries=False, **kwargs)
    if resolved_archive_file is None:
        resolved_archive_file = cached_file(model_name, os.path.join(checkpoint_path, WEIGHTS_INDEX_NAME),
                                            _raise_exceptions_for_missing_entries=False, **kwargs)
        if resolved_archive_file is not None:
            is_sharded = True

    if resolved_archive_file is None:
        raise EnvironmentError(f"Model name {model_name} was not found.")

    if load_safe:
        loader = partial(safe_load_file, device=mapped_device)
    else:
        loader = partial(torch.load, map_location=mapped_device)

    if is_sharded:
        # resolved_archive_file becomes a list of files that point to the different
        # checkpoint shards in this case.
        resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
            model_name, resolved_archive_file
        )
        state_dict = {}
        for sharded_file in resolved_archive_file:
            state_dict.update(loader(sharded_file))
    else:
        state_dict = loader(resolved_archive_file)
    # Convert dtype before moving to GPU to save memory
    if dtype is not None:
        state_dict = {k: v.to(dtype=dtype) for k, v in state_dict.items()}
    state_dict = {k: v.to(device=device) for k, v in state_dict.items()}

    return state_dict


class NovoMolGenConfig(LlamaConfig):
    # model_type = "NovoMolGen"

    def __init__(self,
                 use_flash_attn: bool = True,
                 fused_bias_fc: bool = True,
                 fused_mlp: bool = False,
                 fused_dropout_add_ln: bool = True,
                 residual_in_fp32: bool = True,
                 loss_type: str = 'ForCausalLM',
                 **kwargs
                 ):
        super().__init__(**kwargs)
        self.use_flash_attn = use_flash_attn
        self.fused_bias_fc = fused_bias_fc
        self.fused_mlp = fused_mlp
        self.fused_dropout_add_ln = fused_dropout_add_ln
        self.residual_in_fp32 = residual_in_fp32
        self.loss_type = loss_type
        self.auto_map = {"AutoModelForCausalLM": "modeling_novomolgen.NovoMolGen"}

    @classmethod
    def from_pretrained(
            cls,
            pretrained_model_name_or_path: Union[str, os.PathLike],
            checkpoint_path: str = "",
            cache_dir: Optional[Union[str, os.PathLike]] = None,
            force_download: bool = False,
            local_files_only: bool = False,
            token: Optional[Union[str, bool]] = None,
            revision: str = "main",
            **kwargs,
    ):

        resolved_archive_config_file = cached_file(pretrained_model_name_or_path,
                                                   os.path.join(checkpoint_path, "config.json"),
                                                   _raise_exceptions_for_missing_entries=False, force_download=force_download)

        if resolved_archive_config_file is not None:
            with open(resolved_archive_config_file, "r", encoding="utf-8") as reader:
                text = reader.read()
            config_dict = json.loads(text)

        else:
            raise EnvironmentError(f"config for {pretrained_model_name_or_path} was not found.")

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            print(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class NovoMolGen(GPTLMHeadModel):
    def __init__(
            self,
            config: NovoMolGenConfig,
            mol_type: str = "SMILES",
    ):
        self.base_config = config
        self.mol_type = mol_type
        config = llama_config_to_gpt2_config(config)
        config.use_flash_attn = self.base_config.use_flash_attn
        config.fused_bias_fc = self.base_config.fused_bias_fc
        config.fused_mlp = self.base_config.fused_mlp
        config.fused_dropout_add_ln = self.base_config.fused_dropout_add_ln
        config.residual_in_fp32 = self.base_config.residual_in_fp32
        GPTLMHeadModel.__init__(self, config)

    # TODO: here we ignore attention_mask to make it compatible with HF trainer. The MHA in flash-attention should
    #  be reimplement and integrate attention_mask like here:
    #  https://github.com/huggingface/transformers/blob/0864dd3beb238b7bec3528a3d1d6c17a28f51a51/src/transformers/models/llama/modeling_llama.py#L536
    def forward(self, input_ids, attention_mask: Optional[torch.FloatTensor] = None,
                labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None,
                position_ids=None, inference_params=None, num_last_tokens=0, **loss_kwargs):
        """
                input_ids: (batch, seqlen) int tensor
                inference_params: for generation. Adapted from Megatron-LM (and Apex)
                https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
                num_last_tokens: if > 0, only return the logits for the last n tokens
                """
        assert (
                input_ids.ndim == 2
        ), f"Expected `input_ids` to have shape [b, slen], but got shape {input_ids.shape}"
        b, slen = input_ids.shape
        hidden_states = self.transformer(
            input_ids, position_ids=position_ids, inference_params=inference_params
        )
        if inference_params is not None:
            assert hidden_states.ndim == 3, "sequence_parallel is not supported in generation mode"
        if num_last_tokens > 0:
            hidden_states = hidden_states[:, -num_last_tokens:]
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
        if self.output_scale != 1.0:
            hidden_states = hidden_states * self.output_scale
        if not self.norm_head:
            lm_logits = self.lm_head(hidden_states)
        else:
            lm_head_weight = F.normalize(self.lm_head.weight)
            # if isinstance(self.lm_head, ColumnParallelLinear) and self.lm_head.sequence_parallel:
            #     hidden_states = all_gather(hidden_states, self.lm_head.process_group)
            lm_logits = F.linear(hidden_states, lm_head_weight, bias=self.lm_head.bias)
        # During inference, we want the full logit for sampling
        # if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
        #     lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
        #     lm_logits = rearrange(lm_logits, "(n b) ... d -> b ... (n d)", b=b)

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=lm_logits, labels=labels, vocab_size=self.base_config.vocab_size,
                                      **loss_kwargs)

        return CausalLMOutput(
            loss=loss,
            logits=lm_logits,
            hidden_states=hidden_states
        )

    @property
    def loss_function(self):
        if getattr(self.base_config, "loss_type", None) is not None:
            loss_type = self.base_config.loss_type
        else:
            loss_type = self.__class__.__name__
            if loss_type not in LOSS_MAPPING:
                loss_groups = f"({'|'.join(LOSS_MAPPING)})"
                loss_type = re.findall(loss_groups, self.__class__.__name__)
                if len(loss_type) > 0:
                    loss_type = loss_type[0]
                else:
                    loss_type = None
        if loss_type is None or loss_type not in LOSS_MAPPING and getattr(self.base_config, "loss_type",
                                                                          None) is not None:
            print(
                f"`loss_type={loss_type}` was set in the base_config but it is unrecognised."
                f"Using the default loss: `ForCausalLMLoss`."
            )
            loss_type = "ForCausalLM"
        return LOSS_MAPPING[loss_type]

    def save_pretrained(
            self,
            save_directory: Union[str, os.PathLike],
            is_main_process: bool = True,
            state_dict: Optional[dict] = None,
            safe_serialization: bool = False,
            **kwargs,
    ):

        if safe_serialization:
            raise ImportError("`safe_serialization` is not implemented yet`.")

        if os.path.isfile(save_directory):
            logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
            return
        os.makedirs(save_directory, exist_ok=True)
        # Save the config
        if is_main_process:
            self.base_config.save_pretrained(save_directory)

        # Save the model
        if state_dict is None:
            # Only save the model itself if we are using distributed training
            model_to_save = unwrap_model(self)
            state_dict = model_to_save.state_dict()

        weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
        torch.save(state_dict, os.path.join(save_directory, weights_name))

        # find the file where NovoMolGen is defined
        src = inspect.getsourcefile(type(self))
        if src:
            dst = os.path.join(save_directory, os.path.basename(src))
            shutil.copy(src, dst)

    @classmethod
    def from_pretrained(
        cls, 
        pretrained_model_name_or_path, 
        checkpoint_path: str = "",
        config: Optional[Union[NovoMolGenConfig, str, os.PathLike]] = None,
        **kwargs,
        ):
        if config is None:
            config = NovoMolGenConfig.from_pretrained(pretrained_model_name_or_path, checkpoint_path=checkpoint_path, **kwargs)
        model = cls(config)

        if os.path.exists(pretrained_model_name_or_path):
            state_dict = torch.load(os.path.join(pretrained_model_name_or_path, checkpoint_path, WEIGHTS_NAME))
        else:
            state_dict = state_dict_from_pretrained(pretrained_model_name_or_path, checkpoint_path=checkpoint_path, **kwargs)
        model.load_state_dict(state_dict)
        return model

    def sample(
            self,
            tokenizer,
            batch_size: int = 4,
            max_length: int = 64,
            temperature: float = 1.0,
            top_k: int = 50,
            top_p: float = 0.95,
            device: torch.device = torch.device("cuda"),
    ):
        """
        Generate a batch of sequences from the model.

        Returns a dictionary with up to three keys:
        {
            "<mol_type>": <list of raw sequences in that moltype>,
            "sequences": <torch.LongTensor of valid token IDs>
        }
        """
        input_ids = tokenizer.encode("", return_tensors="pt").to(device)
        # Repeat the prompt for the desired batch size
        input_ids = input_ids.repeat_interleave(batch_size, dim=0)
        # If the tokenizer includes an EOS token for an empty prompt, we remove it.
        if input_ids.shape[1] > 1:
            input_ids = input_ids[:, :-1]

        generation_output = self.generate(
            input_ids,
            max_length=max_length,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
            eos_token_id=tokenizer.eos_token_id,
            return_dict_in_generate=True,
        )

        sequences = self._filter_tokens_after_eos(
            generation_output.sequences, eos_id=tokenizer.eos_token_id
        )

        decoded_strings = tokenizer.batch_decode(sequences, skip_special_tokens=True)
        decoded_strings = [s.replace(" ", "") for s in decoded_strings]

        result = {
            self.mol_type: decoded_strings,
            "sequences": sequences,
        }
        return result

    @staticmethod
    def _filter_tokens_after_eos(sequences, eos_id):
        output = copy.deepcopy(sequences)
        for i in range(sequences.size(0)):
            row = sequences[i]
            eos_position = (row == eos_id).nonzero()
            if eos_position.numel() > 0:
                eos_position = eos_position[0, 0].item()  # Get the index of the first occurrence
                output[i, eos_position + 1:] = eos_id
        return output

    def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **kwargs):
        # HF’s GenerationMixin would normally do more, but for a basic LM this usually suffices:
        return {"input_ids": input_ids, "attention_mask": attention_mask}