kmchiti commited on
Commit
04df117
·
verified ·
1 Parent(s): 4bf3312

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -8
README.md CHANGED
@@ -24,21 +24,42 @@ goal-directed molecule generation tasks.
24
  ## How to load
25
 
26
  ```python
27
- from transformers import AutoTokenizer, AutoModelForCausalLM
28
- tokenizer = AutoTokenizer.from_pretrained("chandar-lab/NovoMolGen_32M_SMILES_BPE", trust_remote_code=True)
29
- model = AutoModelForCausalLM.from_pretrained("chandar-lab/NovoMolGen_32M_SMILES_BPE", trust_remote_code=True)
30
  ```
31
 
32
  ## Quick-start (FlashAttention + bf16)
33
 
34
  ```python
35
- from accelerate import Accelerator
36
 
37
- acc = Accelerator(mixed_precision='bf16')
38
- model = acc.prepare(model)
39
 
40
- outputs = model.sample(tokenizer=tokenizer, batch_size=4)
41
- print(outputs['SMILES'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  ```
43
 
44
  ## Citation
 
24
  ## How to load
25
 
26
  ```python
27
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
28
+ >>> tokenizer = AutoTokenizer.from_pretrained("chandar-lab/NovoMolGen_32M_SMILES_BPE", trust_remote_code=True)
29
+ >>> model = AutoModelForCausalLM.from_pretrained("chandar-lab/NovoMolGen_32M_SMILES_BPE", trust_remote_code=True)
30
  ```
31
 
32
  ## Quick-start (FlashAttention + bf16)
33
 
34
  ```python
35
+ >>> from accelerate import Accelerator
36
 
37
+ >>> acc = Accelerator(mixed_precision='bf16')
38
+ >>> model = acc.prepare(model)
39
 
40
+ >>> outputs = model.sample(tokenizer=tokenizer, batch_size=4)
41
+ >>> print(outputs['SMILES'])
42
+ ```
43
+
44
+ ## Transformers-native HF checkpoint (`revision="hf-checkpoint"`)
45
+
46
+ We also publish a Transformers-native checkpoint on the `hf-checkpoint` revision. This version loads directly with `AutoModelForCausalLM` and works out-of-the-box with `.generate(...)`.
47
+
48
+ ```python
49
+ >>> import torch
50
+ >>> from transformers import AutoTokenizer, AutoModelForCausalLM
51
+
52
+ >>> model = AutoModelForCausalLM.from_pretrained("chandar-lab/NovoMolGen_32M_SMILES_BPE", revision='hf-checkpoint', device_map='auto')
53
+ >>> tokenizer = AutoTokenizer.from_pretrained("chandar-lab/NovoMolGen_32M_SMILES_BPE", revision='hf-checkpoint')
54
+
55
+ >>> input_ids = torch.tensor([[tokenizer.bos_token_id]]).expand(4, -1).contiguous().to(model.device)
56
+ >>> outs = model.generate(input_ids=input_ids, temperature=1.0, max_length=64, do_sample=True, pad_token_id=tokenizer.eos_token_id)
57
+
58
+ >>> molecules = [t.replace(" ", "") for t in tokenizer.batch_decode(outs, skip_special_tokens=True)]
59
+ ['CCO[C@H](CNC(=O)N(CC(=O)OC(C)(C)C)c1cccc(Br)n1)C(F)(F)F',
60
+ 'CCn1nnnc1CNc1ncnc(N[C@H]2CCO[C@@H](C)C2)c1C',
61
+ 'CC(C)(O)CNC(=O)CC[C@H]1C[C@@H](NC(=O)COCC(F)F)C1',
62
+ 'Cc1ncc(C(=O)N2C[C@H]3[C@H](CNC(=O)c4cnn[nH]4)CCC[C@H]3C2)n1C']
63
  ```
64
 
65
  ## Citation