--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: ap-jLype7eJniXiXbhFmRXQx3 results: [] --- # ap-jLype7eJniXiXbhFmRXQx3 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4775 - Model Preparation Time: 0.0215 - Wer: 0.1259 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | |:-------------:|:------:|:----:|:---------------:|:----------------------:|:------:| | 0.4643 | 0.9791 | 41 | 0.4187 | 0.0215 | 0.1415 | | 0.2421 | 1.9791 | 82 | 0.3216 | 0.0215 | 0.1133 | | 0.1917 | 2.9791 | 123 | 0.3110 | 0.0215 | 0.1113 | | 0.1372 | 3.9791 | 164 | 0.3263 | 0.0215 | 0.1222 | | 0.0873 | 4.9791 | 205 | 0.3568 | 0.0215 | 0.1108 | | 0.0598 | 5.9791 | 246 | 0.3809 | 0.0215 | 0.1172 | | 0.0323 | 6.9791 | 287 | 0.4263 | 0.0215 | 0.1150 | | 0.0284 | 7.9791 | 328 | 0.4463 | 0.0215 | 0.1448 | | 0.0149 | 8.9791 | 369 | 0.4452 | 0.0215 | 0.1219 | | 0.0131 | 9.9791 | 410 | 0.4775 | 0.0215 | 0.1259 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0