--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - uta_rldd metrics: - accuracy model-index: - name: vit-base-driver-drowsiness-detection results: - task: name: Image Classification type: image-classification dataset: name: chbh7051/vit-base-driver-drowsiness-detection type: uta_rldd config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9751972942502819 library_name: transformers --- # vit-base-driver-drowsiness-detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the chbh7051/driver-drowsiness-detection dataset. It achieves the following results on the evaluation set: - Loss: 0.0800 - Accuracy: 0.9752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4811 | 0.6 | 2000 | 0.5214 | 0.7636 | | 0.3339 | 1.2 | 4000 | 0.3437 | 0.8621 | | 0.284 | 1.8 | 6000 | 0.2679 | 0.8932 | | 0.2143 | 2.41 | 8000 | 0.2269 | 0.9125 | | 0.0997 | 3.01 | 10000 | 0.1576 | 0.9444 | | 0.1168 | 3.61 | 12000 | 0.1214 | 0.9596 | | 0.0873 | 4.21 | 14000 | 0.1256 | 0.9550 | | 0.06 | 4.81 | 16000 | 0.0800 | 0.9752 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2