--- library_name: peft license: mit base_model: klyang/MentaLLaMA-chat-7B-hf tags: - llama-factory - lora - generated_from_trainer model-index: - name: MentaLLaMA-chat-7B-PsyCourse-fold5 results: [] --- # MentaLLaMA-chat-7B-PsyCourse-fold5 This model is a fine-tuned version of [klyang/MentaLLaMA-chat-7B-hf](https://huggingface.co/klyang/MentaLLaMA-chat-7B-hf) on the course-train-fold5 dataset. It achieves the following results on the evaluation set: - Loss: 0.0295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8836 | 0.0758 | 50 | 0.6510 | | 0.1276 | 0.1517 | 100 | 0.1150 | | 0.0848 | 0.2275 | 150 | 0.0731 | | 0.0545 | 0.3033 | 200 | 0.0569 | | 0.0542 | 0.3791 | 250 | 0.0499 | | 0.0466 | 0.4550 | 300 | 0.0510 | | 0.0517 | 0.5308 | 350 | 0.0468 | | 0.058 | 0.6066 | 400 | 0.0456 | | 0.0521 | 0.6825 | 450 | 0.0405 | | 0.0317 | 0.7583 | 500 | 0.0382 | | 0.0281 | 0.8341 | 550 | 0.0390 | | 0.0388 | 0.9100 | 600 | 0.0388 | | 0.0459 | 0.9858 | 650 | 0.0355 | | 0.0277 | 1.0616 | 700 | 0.0368 | | 0.0342 | 1.1374 | 750 | 0.0369 | | 0.0323 | 1.2133 | 800 | 0.0337 | | 0.0257 | 1.2891 | 850 | 0.0351 | | 0.0218 | 1.3649 | 900 | 0.0346 | | 0.0266 | 1.4408 | 950 | 0.0377 | | 0.0344 | 1.5166 | 1000 | 0.0322 | | 0.0244 | 1.5924 | 1050 | 0.0315 | | 0.0227 | 1.6682 | 1100 | 0.0332 | | 0.0243 | 1.7441 | 1150 | 0.0318 | | 0.03 | 1.8199 | 1200 | 0.0311 | | 0.0307 | 1.8957 | 1250 | 0.0295 | | 0.0344 | 1.9716 | 1300 | 0.0305 | | 0.0214 | 2.0474 | 1350 | 0.0307 | | 0.0178 | 2.1232 | 1400 | 0.0320 | | 0.0167 | 2.1991 | 1450 | 0.0321 | | 0.0115 | 2.2749 | 1500 | 0.0325 | | 0.0192 | 2.3507 | 1550 | 0.0318 | | 0.0233 | 2.4265 | 1600 | 0.0327 | | 0.0108 | 2.5024 | 1650 | 0.0340 | | 0.0256 | 2.5782 | 1700 | 0.0315 | | 0.019 | 2.6540 | 1750 | 0.0300 | | 0.0205 | 2.7299 | 1800 | 0.0302 | | 0.0197 | 2.8057 | 1850 | 0.0307 | | 0.0161 | 2.8815 | 1900 | 0.0303 | | 0.0235 | 2.9573 | 1950 | 0.0302 | | 0.01 | 3.0332 | 2000 | 0.0301 | | 0.0073 | 3.1090 | 2050 | 0.0325 | | 0.0099 | 3.1848 | 2100 | 0.0337 | | 0.0085 | 3.2607 | 2150 | 0.0337 | | 0.0076 | 3.3365 | 2200 | 0.0354 | | 0.0077 | 3.4123 | 2250 | 0.0341 | | 0.0107 | 3.4882 | 2300 | 0.0338 | | 0.006 | 3.5640 | 2350 | 0.0338 | | 0.0127 | 3.6398 | 2400 | 0.0336 | | 0.0099 | 3.7156 | 2450 | 0.0338 | | 0.014 | 3.7915 | 2500 | 0.0337 | | 0.0129 | 3.8673 | 2550 | 0.0339 | | 0.0118 | 3.9431 | 2600 | 0.0350 | | 0.0073 | 4.0190 | 2650 | 0.0346 | | 0.0048 | 4.0948 | 2700 | 0.0357 | | 0.0059 | 4.1706 | 2750 | 0.0373 | | 0.0053 | 4.2464 | 2800 | 0.0373 | | 0.0045 | 4.3223 | 2850 | 0.0381 | | 0.0054 | 4.3981 | 2900 | 0.0388 | | 0.0085 | 4.4739 | 2950 | 0.0385 | | 0.0066 | 4.5498 | 3000 | 0.0384 | | 0.0051 | 4.6256 | 3050 | 0.0386 | | 0.0052 | 4.7014 | 3100 | 0.0388 | | 0.0065 | 4.7773 | 3150 | 0.0389 | | 0.0036 | 4.8531 | 3200 | 0.0391 | | 0.0039 | 4.9289 | 3250 | 0.0391 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3