lbourdois commited on
Commit
3c33254
·
verified ·
1 Parent(s): b01a3fd

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +88 -74
README.md CHANGED
@@ -1,75 +1,89 @@
1
- ---
2
- library_name: peft
3
- license: apache-2.0
4
- base_model: Qwen/Qwen2.5-7B-Instruct
5
- tags:
6
- - llama-factory
7
- - lora
8
- - generated_from_trainer
9
- model-index:
10
- - name: Qwen2.5-7B-Instruct-PsyCourse-doc-fold7
11
- results: []
12
- ---
13
-
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
-
17
- # Qwen2.5-7B-Instruct-PsyCourse-doc-fold7
18
-
19
- This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the course-doc-train-fold7 dataset.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 0.1027
22
-
23
- ## Model description
24
-
25
- More information needed
26
-
27
- ## Intended uses & limitations
28
-
29
- More information needed
30
-
31
- ## Training and evaluation data
32
-
33
- More information needed
34
-
35
- ## Training procedure
36
-
37
- ### Training hyperparameters
38
-
39
- The following hyperparameters were used during training:
40
- - learning_rate: 0.0001
41
- - train_batch_size: 1
42
- - eval_batch_size: 1
43
- - seed: 42
44
- - gradient_accumulation_steps: 16
45
- - total_train_batch_size: 16
46
- - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
47
- - lr_scheduler_type: cosine
48
- - lr_scheduler_warmup_ratio: 0.1
49
- - num_epochs: 5.0
50
-
51
- ### Training results
52
-
53
- | Training Loss | Epoch | Step | Validation Loss |
54
- |:-------------:|:------:|:----:|:---------------:|
55
- | 0.2238 | 0.3951 | 10 | 0.2172 |
56
- | 0.0965 | 0.7901 | 20 | 0.1523 |
57
- | 0.1337 | 1.1852 | 30 | 0.1231 |
58
- | 0.0717 | 1.5802 | 40 | 0.1139 |
59
- | 0.1129 | 1.9753 | 50 | 0.1094 |
60
- | 0.0416 | 2.3704 | 60 | 0.1061 |
61
- | 0.0564 | 2.7654 | 70 | 0.1052 |
62
- | 0.1234 | 3.1605 | 80 | 0.1038 |
63
- | 0.0923 | 3.5556 | 90 | 0.1033 |
64
- | 0.0648 | 3.9506 | 100 | 0.1033 |
65
- | 0.0595 | 4.3457 | 110 | 0.1029 |
66
- | 0.1126 | 4.7407 | 120 | 0.1027 |
67
-
68
-
69
- ### Framework versions
70
-
71
- - PEFT 0.12.0
72
- - Transformers 4.46.1
73
- - Pytorch 2.5.1+cu124
74
- - Datasets 3.1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
  - Tokenizers 0.20.3
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-7B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - lora
8
+ - generated_from_trainer
9
+ language:
10
+ - zho
11
+ - eng
12
+ - fra
13
+ - spa
14
+ - por
15
+ - deu
16
+ - ita
17
+ - rus
18
+ - jpn
19
+ - kor
20
+ - vie
21
+ - tha
22
+ - ara
23
+ model-index:
24
+ - name: Qwen2.5-7B-Instruct-PsyCourse-doc-fold7
25
+ results: []
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # Qwen2.5-7B-Instruct-PsyCourse-doc-fold7
32
+
33
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the course-doc-train-fold7 dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.1027
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0001
55
+ - train_batch_size: 1
56
+ - eval_batch_size: 1
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 16
59
+ - total_train_batch_size: 16
60
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
61
+ - lr_scheduler_type: cosine
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 5.0
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss |
68
+ |:-------------:|:------:|:----:|:---------------:|
69
+ | 0.2238 | 0.3951 | 10 | 0.2172 |
70
+ | 0.0965 | 0.7901 | 20 | 0.1523 |
71
+ | 0.1337 | 1.1852 | 30 | 0.1231 |
72
+ | 0.0717 | 1.5802 | 40 | 0.1139 |
73
+ | 0.1129 | 1.9753 | 50 | 0.1094 |
74
+ | 0.0416 | 2.3704 | 60 | 0.1061 |
75
+ | 0.0564 | 2.7654 | 70 | 0.1052 |
76
+ | 0.1234 | 3.1605 | 80 | 0.1038 |
77
+ | 0.0923 | 3.5556 | 90 | 0.1033 |
78
+ | 0.0648 | 3.9506 | 100 | 0.1033 |
79
+ | 0.0595 | 4.3457 | 110 | 0.1029 |
80
+ | 0.1126 | 4.7407 | 120 | 0.1027 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - PEFT 0.12.0
86
+ - Transformers 4.46.1
87
+ - Pytorch 2.5.1+cu124
88
+ - Datasets 3.1.0
89
  - Tokenizers 0.20.3