--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct tags: - llama-factory - lora - generated_from_trainer language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara model-index: - name: Qwen2.5-7B-Instruct-PsyCourse-fold10 results: [] --- # Qwen2.5-7B-Instruct-PsyCourse-fold10 This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct) on the course-train-fold1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0316 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8737 | 0.0770 | 50 | 0.6946 | | 0.1557 | 0.1539 | 100 | 0.1078 | | 0.0875 | 0.2309 | 150 | 0.0731 | | 0.0735 | 0.3078 | 200 | 0.0561 | | 0.0547 | 0.3848 | 250 | 0.0530 | | 0.052 | 0.4617 | 300 | 0.0499 | | 0.047 | 0.5387 | 350 | 0.0469 | | 0.0618 | 0.6156 | 400 | 0.0442 | | 0.0357 | 0.6926 | 450 | 0.0448 | | 0.0314 | 0.7695 | 500 | 0.0402 | | 0.0476 | 0.8465 | 550 | 0.0388 | | 0.0367 | 0.9234 | 600 | 0.0375 | | 0.031 | 1.0004 | 650 | 0.0365 | | 0.0368 | 1.0773 | 700 | 0.0376 | | 0.0299 | 1.1543 | 750 | 0.0356 | | 0.0296 | 1.2312 | 800 | 0.0348 | | 0.0345 | 1.3082 | 850 | 0.0345 | | 0.0203 | 1.3851 | 900 | 0.0336 | | 0.0406 | 1.4621 | 950 | 0.0341 | | 0.0333 | 1.5391 | 1000 | 0.0332 | | 0.0327 | 1.6160 | 1050 | 0.0328 | | 0.0329 | 1.6930 | 1100 | 0.0344 | | 0.021 | 1.7699 | 1150 | 0.0330 | | 0.021 | 1.8469 | 1200 | 0.0348 | | 0.0293 | 1.9238 | 1250 | 0.0337 | | 0.0229 | 2.0008 | 1300 | 0.0316 | | 0.0163 | 2.0777 | 1350 | 0.0331 | | 0.0355 | 2.1547 | 1400 | 0.0345 | | 0.0129 | 2.2316 | 1450 | 0.0364 | | 0.0188 | 2.3086 | 1500 | 0.0345 | | 0.0158 | 2.3855 | 1550 | 0.0369 | | 0.0158 | 2.4625 | 1600 | 0.0337 | | 0.0219 | 2.5394 | 1650 | 0.0327 | | 0.0171 | 2.6164 | 1700 | 0.0321 | | 0.0266 | 2.6933 | 1750 | 0.0318 | | 0.0244 | 2.7703 | 1800 | 0.0336 | | 0.0231 | 2.8472 | 1850 | 0.0317 | | 0.0186 | 2.9242 | 1900 | 0.0319 | | 0.0296 | 3.0012 | 1950 | 0.0318 | | 0.0102 | 3.0781 | 2000 | 0.0352 | | 0.0088 | 3.1551 | 2050 | 0.0395 | | 0.0099 | 3.2320 | 2100 | 0.0376 | | 0.0088 | 3.3090 | 2150 | 0.0391 | | 0.0138 | 3.3859 | 2200 | 0.0379 | | 0.008 | 3.4629 | 2250 | 0.0388 | | 0.0112 | 3.5398 | 2300 | 0.0395 | | 0.0045 | 3.6168 | 2350 | 0.0386 | | 0.0127 | 3.6937 | 2400 | 0.0393 | | 0.0074 | 3.7707 | 2450 | 0.0397 | | 0.0102 | 3.8476 | 2500 | 0.0399 | | 0.0105 | 3.9246 | 2550 | 0.0410 | | 0.0085 | 4.0015 | 2600 | 0.0412 | | 0.002 | 4.0785 | 2650 | 0.0426 | | 0.0051 | 4.1554 | 2700 | 0.0453 | | 0.0024 | 4.2324 | 2750 | 0.0468 | | 0.0022 | 4.3093 | 2800 | 0.0478 | | 0.0031 | 4.3863 | 2850 | 0.0489 | | 0.0042 | 4.4633 | 2900 | 0.0493 | | 0.0017 | 4.5402 | 2950 | 0.0495 | | 0.0025 | 4.6172 | 3000 | 0.0499 | | 0.0025 | 4.6941 | 3050 | 0.0499 | | 0.0022 | 4.7711 | 3100 | 0.0500 | | 0.0048 | 4.8480 | 3150 | 0.0500 | | 0.002 | 4.9250 | 3200 | 0.0501 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3