Upload folder using huggingface_hub
Browse files- README.md +62 -0
- adapter_config.json +26 -0
- adapter_model.safetensors +3 -0
- all_results.json +7 -0
- checkpoint-100/README.md +204 -0
- checkpoint-100/adapter_config.json +26 -0
- checkpoint-100/adapter_model.safetensors +3 -0
- checkpoint-100/optimizer.pt +3 -0
- checkpoint-100/qwen.tiktoken +0 -0
- checkpoint-100/rng_state_0.pth +3 -0
- checkpoint-100/rng_state_1.pth +3 -0
- checkpoint-100/scheduler.pt +3 -0
- checkpoint-100/special_tokens_map.json +10 -0
- checkpoint-100/tokenization_qwen.py +276 -0
- checkpoint-100/tokenizer_config.json +16 -0
- checkpoint-100/trainer_state.json +81 -0
- checkpoint-100/training_args.bin +3 -0
- qwen.tiktoken +0 -0
- special_tokens_map.json +10 -0
- tokenization_qwen.py +276 -0
- tokenizer_config.json +16 -0
- train_results.json +7 -0
- trainer_log.jsonl +11 -0
- trainer_state.json +90 -0
- training_args.bin +3 -0
README.md
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
library_name: peft
|
| 4 |
+
tags:
|
| 5 |
+
- llama-factory
|
| 6 |
+
- lora
|
| 7 |
+
- generated_from_trainer
|
| 8 |
+
base_model: Qwen/Qwen-14B
|
| 9 |
+
model-index:
|
| 10 |
+
- name: model-update
|
| 11 |
+
results: []
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
+
|
| 17 |
+
# model-update
|
| 18 |
+
|
| 19 |
+
This model is a fine-tuned version of [Qwen/Qwen-14B](https://huggingface.co/Qwen/Qwen-14B) on the oncc_medqa_instruct dataset.
|
| 20 |
+
|
| 21 |
+
## Model description
|
| 22 |
+
|
| 23 |
+
More information needed
|
| 24 |
+
|
| 25 |
+
## Intended uses & limitations
|
| 26 |
+
|
| 27 |
+
More information needed
|
| 28 |
+
|
| 29 |
+
## Training and evaluation data
|
| 30 |
+
|
| 31 |
+
More information needed
|
| 32 |
+
|
| 33 |
+
## Training procedure
|
| 34 |
+
|
| 35 |
+
### Training hyperparameters
|
| 36 |
+
|
| 37 |
+
The following hyperparameters were used during training:
|
| 38 |
+
- learning_rate: 0.0005
|
| 39 |
+
- train_batch_size: 4
|
| 40 |
+
- eval_batch_size: 8
|
| 41 |
+
- seed: 42
|
| 42 |
+
- distributed_type: multi-GPU
|
| 43 |
+
- num_devices: 2
|
| 44 |
+
- gradient_accumulation_steps: 4
|
| 45 |
+
- total_train_batch_size: 32
|
| 46 |
+
- total_eval_batch_size: 16
|
| 47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 48 |
+
- lr_scheduler_type: cosine
|
| 49 |
+
- lr_scheduler_warmup_steps: 20
|
| 50 |
+
- num_epochs: 1.0
|
| 51 |
+
|
| 52 |
+
### Training results
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
### Framework versions
|
| 57 |
+
|
| 58 |
+
- PEFT 0.8.2
|
| 59 |
+
- Transformers 4.37.2
|
| 60 |
+
- Pytorch 2.1.0+cu118
|
| 61 |
+
- Datasets 2.17.0
|
| 62 |
+
- Tokenizers 0.15.2
|
adapter_config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "Qwen/Qwen-14B",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layers_pattern": null,
|
| 10 |
+
"layers_to_transform": null,
|
| 11 |
+
"loftq_config": {},
|
| 12 |
+
"lora_alpha": 16,
|
| 13 |
+
"lora_dropout": 0.2,
|
| 14 |
+
"megatron_config": null,
|
| 15 |
+
"megatron_core": "megatron.core",
|
| 16 |
+
"modules_to_save": null,
|
| 17 |
+
"peft_type": "LORA",
|
| 18 |
+
"r": 8,
|
| 19 |
+
"rank_pattern": {},
|
| 20 |
+
"revision": null,
|
| 21 |
+
"target_modules": [
|
| 22 |
+
"c_attn"
|
| 23 |
+
],
|
| 24 |
+
"task_type": "CAUSAL_LM",
|
| 25 |
+
"use_rslora": false
|
| 26 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f43d643781afa5d2aa692efc46925f4b188b76f0e3aa22a4f17b35abdfc8669
|
| 3 |
+
size 26224792
|
all_results.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.99,
|
| 3 |
+
"train_loss": 1.3724445730152697,
|
| 4 |
+
"train_runtime": 997.8371,
|
| 5 |
+
"train_samples_per_second": 3.26,
|
| 6 |
+
"train_steps_per_second": 0.101
|
| 7 |
+
}
|
checkpoint-100/README.md
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: /workspace/model
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
### Framework versions
|
| 203 |
+
|
| 204 |
+
- PEFT 0.8.2
|
checkpoint-100/adapter_config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "/workspace/model",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layers_pattern": null,
|
| 10 |
+
"layers_to_transform": null,
|
| 11 |
+
"loftq_config": {},
|
| 12 |
+
"lora_alpha": 16,
|
| 13 |
+
"lora_dropout": 0.2,
|
| 14 |
+
"megatron_config": null,
|
| 15 |
+
"megatron_core": "megatron.core",
|
| 16 |
+
"modules_to_save": null,
|
| 17 |
+
"peft_type": "LORA",
|
| 18 |
+
"r": 8,
|
| 19 |
+
"rank_pattern": {},
|
| 20 |
+
"revision": null,
|
| 21 |
+
"target_modules": [
|
| 22 |
+
"c_attn"
|
| 23 |
+
],
|
| 24 |
+
"task_type": "CAUSAL_LM",
|
| 25 |
+
"use_rslora": false
|
| 26 |
+
}
|
checkpoint-100/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c3fb870cd00eea3594999c27c503c37866505a6318d6f63dc065c5034f515c0a
|
| 3 |
+
size 26224792
|
checkpoint-100/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:889cd8162d4dc3d4064d255854ed2a11c40b4cda1cfa87c3b429d0708df9d7c2
|
| 3 |
+
size 52496442
|
checkpoint-100/qwen.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-100/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cf8090c53211d55ffeb520c5a8f757736a59fe7b6a2f2fe70a6af9485d78e00b
|
| 3 |
+
size 14512
|
checkpoint-100/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd6e000df6f861e66b0a3e3ec16f7d3fec8c292181b9a86a85041d3dbb346a21
|
| 3 |
+
size 14512
|
checkpoint-100/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b1fb7bb49dfd916a2b71300ea955fd732e2f4b62b42ce88d3a9132dfa5b3bf78
|
| 3 |
+
size 1064
|
checkpoint-100/special_tokens_map.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": {
|
| 3 |
+
"content": "<|im_end|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"pad_token": "<|im_end|>"
|
| 10 |
+
}
|
checkpoint-100/tokenization_qwen.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba Cloud.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
"""Tokenization classes for QWen."""
|
| 7 |
+
|
| 8 |
+
import base64
|
| 9 |
+
import logging
|
| 10 |
+
import os
|
| 11 |
+
import unicodedata
|
| 12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
| 13 |
+
|
| 14 |
+
import tiktoken
|
| 15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
| 21 |
+
|
| 22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 23 |
+
ENDOFTEXT = "<|endoftext|>"
|
| 24 |
+
IMSTART = "<|im_start|>"
|
| 25 |
+
IMEND = "<|im_end|>"
|
| 26 |
+
# as the default behavior is changed to allow special tokens in
|
| 27 |
+
# regular texts, the surface forms of special tokens need to be
|
| 28 |
+
# as different as possible to minimize the impact
|
| 29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
| 30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
| 31 |
+
SPECIAL_START_ID = 151643
|
| 32 |
+
SPECIAL_TOKENS = tuple(
|
| 33 |
+
enumerate(
|
| 34 |
+
(
|
| 35 |
+
(
|
| 36 |
+
ENDOFTEXT,
|
| 37 |
+
IMSTART,
|
| 38 |
+
IMEND,
|
| 39 |
+
)
|
| 40 |
+
+ EXTRAS
|
| 41 |
+
),
|
| 42 |
+
start=SPECIAL_START_ID,
|
| 43 |
+
)
|
| 44 |
+
)
|
| 45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
| 49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
| 50 |
+
contents = f.read()
|
| 51 |
+
return {
|
| 52 |
+
base64.b64decode(token): int(rank)
|
| 53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
| 58 |
+
"""QWen tokenizer."""
|
| 59 |
+
|
| 60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 61 |
+
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
vocab_file,
|
| 65 |
+
errors="replace",
|
| 66 |
+
extra_vocab_file=None,
|
| 67 |
+
**kwargs,
|
| 68 |
+
):
|
| 69 |
+
super().__init__(**kwargs)
|
| 70 |
+
|
| 71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
| 72 |
+
# use ignore if you are in streaming inference
|
| 73 |
+
self.errors = errors
|
| 74 |
+
|
| 75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
| 76 |
+
self.special_tokens = {
|
| 77 |
+
token: index
|
| 78 |
+
for index, token in SPECIAL_TOKENS
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
# try load extra vocab from file
|
| 82 |
+
if extra_vocab_file is not None:
|
| 83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
| 84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
| 85 |
+
for token, index in extra_mergeable_ranks.items():
|
| 86 |
+
if token in self.mergeable_ranks:
|
| 87 |
+
logger.info(f"extra token {token} exists, skipping")
|
| 88 |
+
continue
|
| 89 |
+
if index in used_ids:
|
| 90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
| 91 |
+
continue
|
| 92 |
+
self.mergeable_ranks[token] = index
|
| 93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
| 94 |
+
|
| 95 |
+
enc = tiktoken.Encoding(
|
| 96 |
+
"Qwen",
|
| 97 |
+
pat_str=PAT_STR,
|
| 98 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 99 |
+
special_tokens=self.special_tokens,
|
| 100 |
+
)
|
| 101 |
+
assert (
|
| 102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
| 103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
| 104 |
+
|
| 105 |
+
self.decoder = {
|
| 106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
| 107 |
+
} # type: dict[int, bytes|str]
|
| 108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
| 109 |
+
|
| 110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
| 111 |
+
|
| 112 |
+
self.eod_id = self.tokenizer.eot_token
|
| 113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
| 114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
| 115 |
+
|
| 116 |
+
def __getstate__(self):
|
| 117 |
+
# for pickle lovers
|
| 118 |
+
state = self.__dict__.copy()
|
| 119 |
+
del state["tokenizer"]
|
| 120 |
+
return state
|
| 121 |
+
|
| 122 |
+
def __setstate__(self, state):
|
| 123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
| 124 |
+
self.__dict__.update(state)
|
| 125 |
+
enc = tiktoken.Encoding(
|
| 126 |
+
"Qwen",
|
| 127 |
+
pat_str=PAT_STR,
|
| 128 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 129 |
+
special_tokens=self.special_tokens,
|
| 130 |
+
)
|
| 131 |
+
self.tokenizer = enc
|
| 132 |
+
|
| 133 |
+
def __len__(self) -> int:
|
| 134 |
+
return self.tokenizer.n_vocab
|
| 135 |
+
|
| 136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
| 137 |
+
return self.mergeable_ranks
|
| 138 |
+
|
| 139 |
+
def convert_tokens_to_ids(
|
| 140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
| 141 |
+
) -> List[int]:
|
| 142 |
+
ids = []
|
| 143 |
+
if isinstance(tokens, (str, bytes)):
|
| 144 |
+
if tokens in self.special_tokens:
|
| 145 |
+
return self.special_tokens[tokens]
|
| 146 |
+
else:
|
| 147 |
+
return self.mergeable_ranks.get(tokens)
|
| 148 |
+
for token in tokens:
|
| 149 |
+
if token in self.special_tokens:
|
| 150 |
+
ids.append(self.special_tokens[token])
|
| 151 |
+
else:
|
| 152 |
+
ids.append(self.mergeable_ranks.get(token))
|
| 153 |
+
return ids
|
| 154 |
+
|
| 155 |
+
def _add_tokens(
|
| 156 |
+
self,
|
| 157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
| 158 |
+
special_tokens: bool = False,
|
| 159 |
+
) -> int:
|
| 160 |
+
if not special_tokens and new_tokens:
|
| 161 |
+
raise ValueError("Adding regular tokens is not supported")
|
| 162 |
+
for token in new_tokens:
|
| 163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
| 164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
| 165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
| 166 |
+
return 0
|
| 167 |
+
|
| 168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
| 169 |
+
"""
|
| 170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
| 171 |
+
|
| 172 |
+
Returns:
|
| 173 |
+
`Tuple(str)`: Paths to the files saved.
|
| 174 |
+
"""
|
| 175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
| 176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
| 177 |
+
for k, v in self.mergeable_ranks.items():
|
| 178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
| 179 |
+
w.write(line)
|
| 180 |
+
return (file_path,)
|
| 181 |
+
|
| 182 |
+
def tokenize(
|
| 183 |
+
self,
|
| 184 |
+
text: str,
|
| 185 |
+
allowed_special: Union[Set, str] = "all",
|
| 186 |
+
disallowed_special: Union[Collection, str] = (),
|
| 187 |
+
**kwargs,
|
| 188 |
+
) -> List[Union[bytes, str]]:
|
| 189 |
+
"""
|
| 190 |
+
Converts a string in a sequence of tokens.
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
text (`str`):
|
| 194 |
+
The sequence to be encoded.
|
| 195 |
+
allowed_special (`Literal["all"]` or `set`):
|
| 196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
| 197 |
+
Default to "all".
|
| 198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
| 199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
| 200 |
+
Default to an empty tuple.
|
| 201 |
+
|
| 202 |
+
kwargs (additional keyword arguments, *optional*):
|
| 203 |
+
Will be passed to the underlying model specific encode method.
|
| 204 |
+
|
| 205 |
+
Returns:
|
| 206 |
+
`List[bytes|str]`: The list of tokens.
|
| 207 |
+
"""
|
| 208 |
+
tokens = []
|
| 209 |
+
text = unicodedata.normalize("NFC", text)
|
| 210 |
+
|
| 211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
| 212 |
+
for t in self.tokenizer.encode(
|
| 213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
| 214 |
+
):
|
| 215 |
+
tokens.append(self.decoder[t])
|
| 216 |
+
return tokens
|
| 217 |
+
|
| 218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
| 219 |
+
"""
|
| 220 |
+
Converts a sequence of tokens in a single string.
|
| 221 |
+
"""
|
| 222 |
+
text = ""
|
| 223 |
+
temp = b""
|
| 224 |
+
for t in tokens:
|
| 225 |
+
if isinstance(t, str):
|
| 226 |
+
if temp:
|
| 227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 228 |
+
temp = b""
|
| 229 |
+
text += t
|
| 230 |
+
elif isinstance(t, bytes):
|
| 231 |
+
temp += t
|
| 232 |
+
else:
|
| 233 |
+
raise TypeError("token should only be of type types or str")
|
| 234 |
+
if temp:
|
| 235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 236 |
+
return text
|
| 237 |
+
|
| 238 |
+
@property
|
| 239 |
+
def vocab_size(self):
|
| 240 |
+
return self.tokenizer.n_vocab
|
| 241 |
+
|
| 242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
| 243 |
+
"""Converts an id to a token, special tokens included"""
|
| 244 |
+
if index in self.decoder:
|
| 245 |
+
return self.decoder[index]
|
| 246 |
+
raise ValueError("unknown ids")
|
| 247 |
+
|
| 248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
| 249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
| 250 |
+
if token in self.special_tokens:
|
| 251 |
+
return self.special_tokens[token]
|
| 252 |
+
if token in self.mergeable_ranks:
|
| 253 |
+
return self.mergeable_ranks[token]
|
| 254 |
+
raise ValueError("unknown token")
|
| 255 |
+
|
| 256 |
+
def _tokenize(self, text: str, **kwargs):
|
| 257 |
+
"""
|
| 258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
| 259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
| 260 |
+
|
| 261 |
+
Do NOT take care of added tokens.
|
| 262 |
+
"""
|
| 263 |
+
raise NotImplementedError
|
| 264 |
+
|
| 265 |
+
def _decode(
|
| 266 |
+
self,
|
| 267 |
+
token_ids: Union[int, List[int]],
|
| 268 |
+
skip_special_tokens: bool = False,
|
| 269 |
+
errors: str = None,
|
| 270 |
+
**kwargs,
|
| 271 |
+
) -> str:
|
| 272 |
+
if isinstance(token_ids, int):
|
| 273 |
+
token_ids = [token_ids]
|
| 274 |
+
if skip_special_tokens:
|
| 275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
| 276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
checkpoint-100/tokenizer_config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {},
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoTokenizer": [
|
| 5 |
+
"tokenization_qwen.QWenTokenizer",
|
| 6 |
+
null
|
| 7 |
+
]
|
| 8 |
+
},
|
| 9 |
+
"clean_up_tokenization_spaces": true,
|
| 10 |
+
"eos_token": "<|im_end|>",
|
| 11 |
+
"model_max_length": 8192,
|
| 12 |
+
"pad_token": "<|im_end|>",
|
| 13 |
+
"padding_side": "right",
|
| 14 |
+
"split_special_tokens": false,
|
| 15 |
+
"tokenizer_class": "QWenTokenizer"
|
| 16 |
+
}
|
checkpoint-100/trainer_state.json
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.9828009828009828,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 100,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.1,
|
| 13 |
+
"learning_rate": 0.00015,
|
| 14 |
+
"loss": 3.3956,
|
| 15 |
+
"step": 10
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"epoch": 0.2,
|
| 19 |
+
"learning_rate": 0.0004,
|
| 20 |
+
"loss": 1.8859,
|
| 21 |
+
"step": 20
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"epoch": 0.29,
|
| 25 |
+
"learning_rate": 0.0004932612176449559,
|
| 26 |
+
"loss": 1.1419,
|
| 27 |
+
"step": 30
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 0.39,
|
| 31 |
+
"learning_rate": 0.0004533880175657419,
|
| 32 |
+
"loss": 1.0646,
|
| 33 |
+
"step": 40
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.49,
|
| 37 |
+
"learning_rate": 0.00038330110820042286,
|
| 38 |
+
"loss": 1.0495,
|
| 39 |
+
"step": 50
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"epoch": 0.59,
|
| 43 |
+
"learning_rate": 0.00029341204441673266,
|
| 44 |
+
"loss": 1.0399,
|
| 45 |
+
"step": 60
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.69,
|
| 49 |
+
"learning_rate": 0.00019707403194264738,
|
| 50 |
+
"loss": 1.0655,
|
| 51 |
+
"step": 70
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.79,
|
| 55 |
+
"learning_rate": 0.0001085982811283654,
|
| 56 |
+
"loss": 1.037,
|
| 57 |
+
"step": 80
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 0.88,
|
| 61 |
+
"learning_rate": 4.112804714676593e-05,
|
| 62 |
+
"loss": 1.028,
|
| 63 |
+
"step": 90
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"epoch": 0.98,
|
| 67 |
+
"learning_rate": 4.686172343153827e-06,
|
| 68 |
+
"loss": 1.0416,
|
| 69 |
+
"step": 100
|
| 70 |
+
}
|
| 71 |
+
],
|
| 72 |
+
"logging_steps": 10,
|
| 73 |
+
"max_steps": 101,
|
| 74 |
+
"num_input_tokens_seen": 0,
|
| 75 |
+
"num_train_epochs": 1,
|
| 76 |
+
"save_steps": 100,
|
| 77 |
+
"total_flos": 9.179600852615168e+16,
|
| 78 |
+
"train_batch_size": 4,
|
| 79 |
+
"trial_name": null,
|
| 80 |
+
"trial_params": null
|
| 81 |
+
}
|
checkpoint-100/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:10f52addfae88bfe0743533886cca568f23207d50a6241fd2bdb5be54e5fca9d
|
| 3 |
+
size 4856
|
qwen.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": {
|
| 3 |
+
"content": "<|im_end|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"pad_token": "<|im_end|>"
|
| 10 |
+
}
|
tokenization_qwen.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) Alibaba Cloud.
|
| 2 |
+
#
|
| 3 |
+
# This source code is licensed under the license found in the
|
| 4 |
+
# LICENSE file in the root directory of this source tree.
|
| 5 |
+
|
| 6 |
+
"""Tokenization classes for QWen."""
|
| 7 |
+
|
| 8 |
+
import base64
|
| 9 |
+
import logging
|
| 10 |
+
import os
|
| 11 |
+
import unicodedata
|
| 12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
| 13 |
+
|
| 14 |
+
import tiktoken
|
| 15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
| 21 |
+
|
| 22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 23 |
+
ENDOFTEXT = "<|endoftext|>"
|
| 24 |
+
IMSTART = "<|im_start|>"
|
| 25 |
+
IMEND = "<|im_end|>"
|
| 26 |
+
# as the default behavior is changed to allow special tokens in
|
| 27 |
+
# regular texts, the surface forms of special tokens need to be
|
| 28 |
+
# as different as possible to minimize the impact
|
| 29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
| 30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
| 31 |
+
SPECIAL_START_ID = 151643
|
| 32 |
+
SPECIAL_TOKENS = tuple(
|
| 33 |
+
enumerate(
|
| 34 |
+
(
|
| 35 |
+
(
|
| 36 |
+
ENDOFTEXT,
|
| 37 |
+
IMSTART,
|
| 38 |
+
IMEND,
|
| 39 |
+
)
|
| 40 |
+
+ EXTRAS
|
| 41 |
+
),
|
| 42 |
+
start=SPECIAL_START_ID,
|
| 43 |
+
)
|
| 44 |
+
)
|
| 45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
| 49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
| 50 |
+
contents = f.read()
|
| 51 |
+
return {
|
| 52 |
+
base64.b64decode(token): int(rank)
|
| 53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
| 58 |
+
"""QWen tokenizer."""
|
| 59 |
+
|
| 60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 61 |
+
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
vocab_file,
|
| 65 |
+
errors="replace",
|
| 66 |
+
extra_vocab_file=None,
|
| 67 |
+
**kwargs,
|
| 68 |
+
):
|
| 69 |
+
super().__init__(**kwargs)
|
| 70 |
+
|
| 71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
| 72 |
+
# use ignore if you are in streaming inference
|
| 73 |
+
self.errors = errors
|
| 74 |
+
|
| 75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
| 76 |
+
self.special_tokens = {
|
| 77 |
+
token: index
|
| 78 |
+
for index, token in SPECIAL_TOKENS
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
# try load extra vocab from file
|
| 82 |
+
if extra_vocab_file is not None:
|
| 83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
| 84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
| 85 |
+
for token, index in extra_mergeable_ranks.items():
|
| 86 |
+
if token in self.mergeable_ranks:
|
| 87 |
+
logger.info(f"extra token {token} exists, skipping")
|
| 88 |
+
continue
|
| 89 |
+
if index in used_ids:
|
| 90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
| 91 |
+
continue
|
| 92 |
+
self.mergeable_ranks[token] = index
|
| 93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
| 94 |
+
|
| 95 |
+
enc = tiktoken.Encoding(
|
| 96 |
+
"Qwen",
|
| 97 |
+
pat_str=PAT_STR,
|
| 98 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 99 |
+
special_tokens=self.special_tokens,
|
| 100 |
+
)
|
| 101 |
+
assert (
|
| 102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
| 103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
| 104 |
+
|
| 105 |
+
self.decoder = {
|
| 106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
| 107 |
+
} # type: dict[int, bytes|str]
|
| 108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
| 109 |
+
|
| 110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
| 111 |
+
|
| 112 |
+
self.eod_id = self.tokenizer.eot_token
|
| 113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
| 114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
| 115 |
+
|
| 116 |
+
def __getstate__(self):
|
| 117 |
+
# for pickle lovers
|
| 118 |
+
state = self.__dict__.copy()
|
| 119 |
+
del state["tokenizer"]
|
| 120 |
+
return state
|
| 121 |
+
|
| 122 |
+
def __setstate__(self, state):
|
| 123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
| 124 |
+
self.__dict__.update(state)
|
| 125 |
+
enc = tiktoken.Encoding(
|
| 126 |
+
"Qwen",
|
| 127 |
+
pat_str=PAT_STR,
|
| 128 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 129 |
+
special_tokens=self.special_tokens,
|
| 130 |
+
)
|
| 131 |
+
self.tokenizer = enc
|
| 132 |
+
|
| 133 |
+
def __len__(self) -> int:
|
| 134 |
+
return self.tokenizer.n_vocab
|
| 135 |
+
|
| 136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
| 137 |
+
return self.mergeable_ranks
|
| 138 |
+
|
| 139 |
+
def convert_tokens_to_ids(
|
| 140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
| 141 |
+
) -> List[int]:
|
| 142 |
+
ids = []
|
| 143 |
+
if isinstance(tokens, (str, bytes)):
|
| 144 |
+
if tokens in self.special_tokens:
|
| 145 |
+
return self.special_tokens[tokens]
|
| 146 |
+
else:
|
| 147 |
+
return self.mergeable_ranks.get(tokens)
|
| 148 |
+
for token in tokens:
|
| 149 |
+
if token in self.special_tokens:
|
| 150 |
+
ids.append(self.special_tokens[token])
|
| 151 |
+
else:
|
| 152 |
+
ids.append(self.mergeable_ranks.get(token))
|
| 153 |
+
return ids
|
| 154 |
+
|
| 155 |
+
def _add_tokens(
|
| 156 |
+
self,
|
| 157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
| 158 |
+
special_tokens: bool = False,
|
| 159 |
+
) -> int:
|
| 160 |
+
if not special_tokens and new_tokens:
|
| 161 |
+
raise ValueError("Adding regular tokens is not supported")
|
| 162 |
+
for token in new_tokens:
|
| 163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
| 164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
| 165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
| 166 |
+
return 0
|
| 167 |
+
|
| 168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
| 169 |
+
"""
|
| 170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
| 171 |
+
|
| 172 |
+
Returns:
|
| 173 |
+
`Tuple(str)`: Paths to the files saved.
|
| 174 |
+
"""
|
| 175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
| 176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
| 177 |
+
for k, v in self.mergeable_ranks.items():
|
| 178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
| 179 |
+
w.write(line)
|
| 180 |
+
return (file_path,)
|
| 181 |
+
|
| 182 |
+
def tokenize(
|
| 183 |
+
self,
|
| 184 |
+
text: str,
|
| 185 |
+
allowed_special: Union[Set, str] = "all",
|
| 186 |
+
disallowed_special: Union[Collection, str] = (),
|
| 187 |
+
**kwargs,
|
| 188 |
+
) -> List[Union[bytes, str]]:
|
| 189 |
+
"""
|
| 190 |
+
Converts a string in a sequence of tokens.
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
text (`str`):
|
| 194 |
+
The sequence to be encoded.
|
| 195 |
+
allowed_special (`Literal["all"]` or `set`):
|
| 196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
| 197 |
+
Default to "all".
|
| 198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
| 199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
| 200 |
+
Default to an empty tuple.
|
| 201 |
+
|
| 202 |
+
kwargs (additional keyword arguments, *optional*):
|
| 203 |
+
Will be passed to the underlying model specific encode method.
|
| 204 |
+
|
| 205 |
+
Returns:
|
| 206 |
+
`List[bytes|str]`: The list of tokens.
|
| 207 |
+
"""
|
| 208 |
+
tokens = []
|
| 209 |
+
text = unicodedata.normalize("NFC", text)
|
| 210 |
+
|
| 211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
| 212 |
+
for t in self.tokenizer.encode(
|
| 213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
| 214 |
+
):
|
| 215 |
+
tokens.append(self.decoder[t])
|
| 216 |
+
return tokens
|
| 217 |
+
|
| 218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
| 219 |
+
"""
|
| 220 |
+
Converts a sequence of tokens in a single string.
|
| 221 |
+
"""
|
| 222 |
+
text = ""
|
| 223 |
+
temp = b""
|
| 224 |
+
for t in tokens:
|
| 225 |
+
if isinstance(t, str):
|
| 226 |
+
if temp:
|
| 227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 228 |
+
temp = b""
|
| 229 |
+
text += t
|
| 230 |
+
elif isinstance(t, bytes):
|
| 231 |
+
temp += t
|
| 232 |
+
else:
|
| 233 |
+
raise TypeError("token should only be of type types or str")
|
| 234 |
+
if temp:
|
| 235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 236 |
+
return text
|
| 237 |
+
|
| 238 |
+
@property
|
| 239 |
+
def vocab_size(self):
|
| 240 |
+
return self.tokenizer.n_vocab
|
| 241 |
+
|
| 242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
| 243 |
+
"""Converts an id to a token, special tokens included"""
|
| 244 |
+
if index in self.decoder:
|
| 245 |
+
return self.decoder[index]
|
| 246 |
+
raise ValueError("unknown ids")
|
| 247 |
+
|
| 248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
| 249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
| 250 |
+
if token in self.special_tokens:
|
| 251 |
+
return self.special_tokens[token]
|
| 252 |
+
if token in self.mergeable_ranks:
|
| 253 |
+
return self.mergeable_ranks[token]
|
| 254 |
+
raise ValueError("unknown token")
|
| 255 |
+
|
| 256 |
+
def _tokenize(self, text: str, **kwargs):
|
| 257 |
+
"""
|
| 258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
| 259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
| 260 |
+
|
| 261 |
+
Do NOT take care of added tokens.
|
| 262 |
+
"""
|
| 263 |
+
raise NotImplementedError
|
| 264 |
+
|
| 265 |
+
def _decode(
|
| 266 |
+
self,
|
| 267 |
+
token_ids: Union[int, List[int]],
|
| 268 |
+
skip_special_tokens: bool = False,
|
| 269 |
+
errors: str = None,
|
| 270 |
+
**kwargs,
|
| 271 |
+
) -> str:
|
| 272 |
+
if isinstance(token_ids, int):
|
| 273 |
+
token_ids = [token_ids]
|
| 274 |
+
if skip_special_tokens:
|
| 275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
| 276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {},
|
| 3 |
+
"auto_map": {
|
| 4 |
+
"AutoTokenizer": [
|
| 5 |
+
"tokenization_qwen.QWenTokenizer",
|
| 6 |
+
null
|
| 7 |
+
]
|
| 8 |
+
},
|
| 9 |
+
"clean_up_tokenization_spaces": true,
|
| 10 |
+
"eos_token": "<|im_end|>",
|
| 11 |
+
"model_max_length": 8192,
|
| 12 |
+
"pad_token": "<|im_end|>",
|
| 13 |
+
"padding_side": "right",
|
| 14 |
+
"split_special_tokens": false,
|
| 15 |
+
"tokenizer_class": "QWenTokenizer"
|
| 16 |
+
}
|
train_results.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"epoch": 0.99,
|
| 3 |
+
"train_loss": 1.3724445730152697,
|
| 4 |
+
"train_runtime": 997.8371,
|
| 5 |
+
"train_samples_per_second": 3.26,
|
| 6 |
+
"train_steps_per_second": 0.101
|
| 7 |
+
}
|
trainer_log.jsonl
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"current_steps": 10, "total_steps": 101, "loss": 3.3956, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00015, "epoch": 0.1, "percentage": 9.9, "elapsed_time": "0:01:38", "remaining_time": "0:14:52"}
|
| 2 |
+
{"current_steps": 20, "total_steps": 101, "loss": 1.8859, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0004, "epoch": 0.2, "percentage": 19.8, "elapsed_time": "0:03:12", "remaining_time": "0:12:59"}
|
| 3 |
+
{"current_steps": 30, "total_steps": 101, "loss": 1.1419, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0004932612176449559, "epoch": 0.29, "percentage": 29.7, "elapsed_time": "0:04:52", "remaining_time": "0:11:32"}
|
| 4 |
+
{"current_steps": 40, "total_steps": 101, "loss": 1.0646, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0004533880175657419, "epoch": 0.39, "percentage": 39.6, "elapsed_time": "0:06:32", "remaining_time": "0:09:58"}
|
| 5 |
+
{"current_steps": 50, "total_steps": 101, "loss": 1.0495, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00038330110820042286, "epoch": 0.49, "percentage": 49.5, "elapsed_time": "0:08:06", "remaining_time": "0:08:15"}
|
| 6 |
+
{"current_steps": 60, "total_steps": 101, "loss": 1.0399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00029341204441673266, "epoch": 0.59, "percentage": 59.41, "elapsed_time": "0:09:48", "remaining_time": "0:06:41"}
|
| 7 |
+
{"current_steps": 70, "total_steps": 101, "loss": 1.0655, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019707403194264738, "epoch": 0.69, "percentage": 69.31, "elapsed_time": "0:11:27", "remaining_time": "0:05:04"}
|
| 8 |
+
{"current_steps": 80, "total_steps": 101, "loss": 1.037, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001085982811283654, "epoch": 0.79, "percentage": 79.21, "elapsed_time": "0:13:10", "remaining_time": "0:03:27"}
|
| 9 |
+
{"current_steps": 90, "total_steps": 101, "loss": 1.028, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.112804714676593e-05, "epoch": 0.88, "percentage": 89.11, "elapsed_time": "0:14:50", "remaining_time": "0:01:48"}
|
| 10 |
+
{"current_steps": 100, "total_steps": 101, "loss": 1.0416, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.686172343153827e-06, "epoch": 0.98, "percentage": 99.01, "elapsed_time": "0:16:25", "remaining_time": "0:00:09"}
|
| 11 |
+
{"current_steps": 101, "total_steps": 101, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 0.99, "percentage": 100.0, "elapsed_time": "0:16:37", "remaining_time": "0:00:00"}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.9926289926289926,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 101,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.1,
|
| 13 |
+
"learning_rate": 0.00015,
|
| 14 |
+
"loss": 3.3956,
|
| 15 |
+
"step": 10
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"epoch": 0.2,
|
| 19 |
+
"learning_rate": 0.0004,
|
| 20 |
+
"loss": 1.8859,
|
| 21 |
+
"step": 20
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"epoch": 0.29,
|
| 25 |
+
"learning_rate": 0.0004932612176449559,
|
| 26 |
+
"loss": 1.1419,
|
| 27 |
+
"step": 30
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 0.39,
|
| 31 |
+
"learning_rate": 0.0004533880175657419,
|
| 32 |
+
"loss": 1.0646,
|
| 33 |
+
"step": 40
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.49,
|
| 37 |
+
"learning_rate": 0.00038330110820042286,
|
| 38 |
+
"loss": 1.0495,
|
| 39 |
+
"step": 50
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"epoch": 0.59,
|
| 43 |
+
"learning_rate": 0.00029341204441673266,
|
| 44 |
+
"loss": 1.0399,
|
| 45 |
+
"step": 60
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.69,
|
| 49 |
+
"learning_rate": 0.00019707403194264738,
|
| 50 |
+
"loss": 1.0655,
|
| 51 |
+
"step": 70
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.79,
|
| 55 |
+
"learning_rate": 0.0001085982811283654,
|
| 56 |
+
"loss": 1.037,
|
| 57 |
+
"step": 80
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 0.88,
|
| 61 |
+
"learning_rate": 4.112804714676593e-05,
|
| 62 |
+
"loss": 1.028,
|
| 63 |
+
"step": 90
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"epoch": 0.98,
|
| 67 |
+
"learning_rate": 4.686172343153827e-06,
|
| 68 |
+
"loss": 1.0416,
|
| 69 |
+
"step": 100
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"epoch": 0.99,
|
| 73 |
+
"step": 101,
|
| 74 |
+
"total_flos": 9.277589981180723e+16,
|
| 75 |
+
"train_loss": 1.3724445730152697,
|
| 76 |
+
"train_runtime": 997.8371,
|
| 77 |
+
"train_samples_per_second": 3.26,
|
| 78 |
+
"train_steps_per_second": 0.101
|
| 79 |
+
}
|
| 80 |
+
],
|
| 81 |
+
"logging_steps": 10,
|
| 82 |
+
"max_steps": 101,
|
| 83 |
+
"num_input_tokens_seen": 0,
|
| 84 |
+
"num_train_epochs": 1,
|
| 85 |
+
"save_steps": 100,
|
| 86 |
+
"total_flos": 9.277589981180723e+16,
|
| 87 |
+
"train_batch_size": 4,
|
| 88 |
+
"trial_name": null,
|
| 89 |
+
"trial_params": null
|
| 90 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:10f52addfae88bfe0743533886cca568f23207d50a6241fd2bdb5be54e5fca9d
|
| 3 |
+
size 4856
|