Upload 11 files
Browse files- config.json +23 -0
- modeling_esm_plusplus.py +1081 -0
- optimizer.pt +3 -0
- pytorch_model.bin +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +10 -0
- tokenizer.json +167 -0
- tokenizer_config.json +64 -0
- trainer_state.json +337 -0
- training_args.bin +3 -0
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/huang/chy/ESMC/esm plus",
|
3 |
+
"architectures": [
|
4 |
+
"ESMplusplusForSequenceClassification"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "modeling_esm_plusplus.ESMplusplusConfig",
|
8 |
+
"AutoModel": "modeling_esm_plusplus.ESMplusplusModel",
|
9 |
+
"AutoModelForMaskedLM": "modeling_esm_plusplus.ESMplusplusForMaskedLM",
|
10 |
+
"AutoModelForSequenceClassification": "modeling_esm_plusplus.ESMplusplusForSequenceClassification",
|
11 |
+
"AutoModelForTokenClassification": "modeling_esm_plusplus.ESMplusplusForTokenClassification"
|
12 |
+
},
|
13 |
+
"dropout": 0.0,
|
14 |
+
"hidden_size": 1152,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"model_type": "ESMplusplus",
|
17 |
+
"num_attention_heads": 18,
|
18 |
+
"num_hidden_layers": 36,
|
19 |
+
"problem_type": "single_label_classification",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.46.3",
|
22 |
+
"vocab_size": 64
|
23 |
+
}
|
modeling_esm_plusplus.py
ADDED
@@ -0,0 +1,1081 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ESM++ model implementation.
|
3 |
+
|
4 |
+
ESM++ is a faithful implementation of ESMC that allows for batching and standard Huggingface compatibility
|
5 |
+
The ESM Python package is not required
|
6 |
+
|
7 |
+
Modified from https://github.com/evolutionaryscale/esm
|
8 |
+
License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement
|
9 |
+
"""
|
10 |
+
|
11 |
+
import math
|
12 |
+
import os
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from functools import cache, partial
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
from einops import rearrange, repeat
|
21 |
+
from huggingface_hub import snapshot_download
|
22 |
+
from tokenizers import Tokenizer
|
23 |
+
from tokenizers.models import BPE
|
24 |
+
from tokenizers.processors import TemplateProcessing
|
25 |
+
from torch.utils.data import Dataset, DataLoader
|
26 |
+
from tqdm.auto import tqdm
|
27 |
+
from transformers import PreTrainedModel, PreTrainedTokenizerFast, PretrainedConfig
|
28 |
+
from transformers.modeling_outputs import ModelOutput
|
29 |
+
|
30 |
+
|
31 |
+
class ESMplusplusConfig(PretrainedConfig):
|
32 |
+
"""Configuration class for ESM++ model.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size: Size of the vocabulary
|
36 |
+
hidden_size: Dimension of hidden layers
|
37 |
+
num_attention_heads: Number of attention heads
|
38 |
+
num_hidden_layers: Number of transformer layers
|
39 |
+
num_labels: Number of output labels for classification
|
40 |
+
problem_type: Type of problem - regression, single/multi label classification
|
41 |
+
"""
|
42 |
+
model_type = "ESMplusplus"
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
vocab_size: int = 64,
|
46 |
+
hidden_size: int = 960,
|
47 |
+
num_attention_heads: int = 15,
|
48 |
+
num_hidden_layers: int = 30,
|
49 |
+
num_labels: int = 2,
|
50 |
+
problem_type: str | None = None,
|
51 |
+
dropout: float = 0.0,
|
52 |
+
initializer_range: float = 0.02,
|
53 |
+
**kwargs,
|
54 |
+
):
|
55 |
+
super().__init__(**kwargs)
|
56 |
+
self.vocab_size = vocab_size
|
57 |
+
self.hidden_size = hidden_size
|
58 |
+
self.num_attention_heads = num_attention_heads
|
59 |
+
self.num_hidden_layers = num_hidden_layers
|
60 |
+
self.num_labels = num_labels
|
61 |
+
self.problem_type = problem_type
|
62 |
+
self.dropout = dropout
|
63 |
+
self.initializer_range = initializer_range
|
64 |
+
|
65 |
+
|
66 |
+
### Rotary Embeddings
|
67 |
+
def rotate_half(x: torch.Tensor, interleaved: bool = False) -> torch.Tensor:
|
68 |
+
"""Rotates half the hidden dims of the input."""
|
69 |
+
if not interleaved:
|
70 |
+
x1, x2 = x.chunk(2, dim=-1)
|
71 |
+
return torch.cat((-x2, x1), dim=-1)
|
72 |
+
else:
|
73 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
74 |
+
return rearrange(
|
75 |
+
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
|
76 |
+
)
|
77 |
+
|
78 |
+
|
79 |
+
def apply_rotary_emb_torch(
|
80 |
+
x: torch.Tensor,
|
81 |
+
cos: torch.Tensor,
|
82 |
+
sin: torch.Tensor,
|
83 |
+
interleaved: bool = False,
|
84 |
+
_inplace: bool = False,
|
85 |
+
) -> torch.Tensor:
|
86 |
+
"""Apply rotary embeddings to input based on cos and sin."""
|
87 |
+
ro_dim = cos.shape[-1] * 2
|
88 |
+
assert ro_dim <= x.shape[-1]
|
89 |
+
seqlen = x.size(1)
|
90 |
+
cos = cos[:seqlen]
|
91 |
+
sin = sin[:seqlen]
|
92 |
+
cos = repeat(cos, "s d -> s 1 (2 d)")
|
93 |
+
sin = repeat(sin, "s d -> s 1 (2 d)")
|
94 |
+
return torch.cat(
|
95 |
+
[
|
96 |
+
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
|
97 |
+
x[..., ro_dim:],
|
98 |
+
],
|
99 |
+
dim=-1,
|
100 |
+
)
|
101 |
+
|
102 |
+
|
103 |
+
class RotaryEmbedding(torch.nn.Module):
|
104 |
+
"""Rotary position embeddings.
|
105 |
+
|
106 |
+
Based on the paper "RoFormer: Enhanced Transformer with Rotary Position Embedding"
|
107 |
+
|
108 |
+
Args:
|
109 |
+
dim: Dimension of the embedding
|
110 |
+
base: Base for computing angular frequencies
|
111 |
+
interleaved: Whether to use interleaved rotations
|
112 |
+
scale_base: Base for scaling
|
113 |
+
scaling_factor: Factor for scaling positions
|
114 |
+
pos_idx_in_fp32: Whether to compute position indices in fp32
|
115 |
+
device: Computation device
|
116 |
+
"""
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
dim: int,
|
120 |
+
base: float = 10000.0,
|
121 |
+
interleaved: bool = False,
|
122 |
+
scale_base: Optional[float] = None,
|
123 |
+
scaling_factor: float = 1.0,
|
124 |
+
pos_idx_in_fp32: bool = True,
|
125 |
+
device: Optional[torch.device] = None,
|
126 |
+
):
|
127 |
+
super().__init__()
|
128 |
+
self.dim = dim
|
129 |
+
self.base = float(base)
|
130 |
+
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
131 |
+
self.interleaved = interleaved
|
132 |
+
self.scale_base = scale_base
|
133 |
+
self.scaling_factor = scaling_factor
|
134 |
+
self.device = device
|
135 |
+
|
136 |
+
self._seq_len_cached = 0
|
137 |
+
self._cos_cached = None
|
138 |
+
self._sin_cached = None
|
139 |
+
self._cos_k_cached = None
|
140 |
+
self._sin_k_cached = None
|
141 |
+
self.reset_parameters()
|
142 |
+
|
143 |
+
def reset_parameters(self):
|
144 |
+
"""Reset the parameters of the embedding."""
|
145 |
+
inv_freq = self._compute_inv_freq(self.device)
|
146 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
147 |
+
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
|
148 |
+
scale = (
|
149 |
+
(arange + 0.4 * self.dim) / (1.4 * self.dim)
|
150 |
+
if self.scale_base is not None
|
151 |
+
else None
|
152 |
+
)
|
153 |
+
self.register_buffer("scale", scale)
|
154 |
+
|
155 |
+
def _compute_inv_freq(self, device: Optional[torch.device] = None) -> torch.Tensor:
|
156 |
+
"""Compute inverse frequency bands."""
|
157 |
+
return 1 / (
|
158 |
+
self.base
|
159 |
+
** (
|
160 |
+
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
|
161 |
+
/ self.dim
|
162 |
+
)
|
163 |
+
)
|
164 |
+
|
165 |
+
def _update_cos_sin_cache(self, seqlen: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
166 |
+
"""Update the cached cosine and sine values."""
|
167 |
+
if (
|
168 |
+
seqlen > self._seq_len_cached
|
169 |
+
or self._cos_cached is None
|
170 |
+
or self._cos_cached.device != device
|
171 |
+
or self._cos_cached.dtype != dtype
|
172 |
+
or (self.training and self._cos_cached.is_inference())
|
173 |
+
):
|
174 |
+
self._seq_len_cached = seqlen
|
175 |
+
if self.pos_idx_in_fp32:
|
176 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
177 |
+
t /= self.scaling_factor
|
178 |
+
if self.inv_freq.dtype != torch.float32:
|
179 |
+
inv_freq = self.inv_freq.to(torch.float32)
|
180 |
+
else:
|
181 |
+
inv_freq = self.inv_freq
|
182 |
+
else:
|
183 |
+
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
184 |
+
t /= self.scaling_factor
|
185 |
+
inv_freq = self.inv_freq
|
186 |
+
freqs = torch.outer(t, inv_freq)
|
187 |
+
|
188 |
+
if self.scale is None:
|
189 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
190 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
191 |
+
else:
|
192 |
+
power = (
|
193 |
+
torch.arange(
|
194 |
+
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
195 |
+
)
|
196 |
+
- seqlen // 2
|
197 |
+
) / self.scale_base
|
198 |
+
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
199 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
200 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
201 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
202 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
203 |
+
|
204 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
205 |
+
"""Apply rotary embeddings to queries and keys.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
q: Query tensor of shape (batch, seqlen, nheads, headdim)
|
209 |
+
k: Key tensor of shape (batch, seqlen, nheads, headdim)
|
210 |
+
|
211 |
+
Returns:
|
212 |
+
Tuple of rotated query and key tensors
|
213 |
+
"""
|
214 |
+
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
|
215 |
+
assert self._cos_cached is not None
|
216 |
+
assert self._sin_cached is not None
|
217 |
+
if self.scale is None:
|
218 |
+
return (
|
219 |
+
apply_rotary_emb_torch(
|
220 |
+
q,
|
221 |
+
self._cos_cached,
|
222 |
+
self._sin_cached,
|
223 |
+
self.interleaved,
|
224 |
+
True, # inplace=True
|
225 |
+
),
|
226 |
+
apply_rotary_emb_torch(
|
227 |
+
k,
|
228 |
+
self._cos_cached,
|
229 |
+
self._sin_cached,
|
230 |
+
self.interleaved,
|
231 |
+
True, # inplace=True
|
232 |
+
),
|
233 |
+
) # type: ignore
|
234 |
+
else:
|
235 |
+
assert False
|
236 |
+
|
237 |
+
|
238 |
+
### Feedforward Network Components
|
239 |
+
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
|
240 |
+
"""Compute corrected dimension for SwiGLU."""
|
241 |
+
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
|
242 |
+
|
243 |
+
|
244 |
+
class SwiGLU(nn.Module):
|
245 |
+
"""SwiGLU activation function."""
|
246 |
+
def __init__(self):
|
247 |
+
super(SwiGLU, self).__init__()
|
248 |
+
|
249 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
250 |
+
x1, x2 = x.chunk(2, dim=-1)
|
251 |
+
return F.silu(x1) * x2
|
252 |
+
|
253 |
+
|
254 |
+
def swiglu_ln_ffn(d_model: int, expansion_ratio: float) -> nn.Sequential:
|
255 |
+
"""Create SwiGLU feedforward network with layer normalization."""
|
256 |
+
return nn.Sequential(
|
257 |
+
nn.LayerNorm(d_model),
|
258 |
+
nn.Linear(
|
259 |
+
d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False
|
260 |
+
),
|
261 |
+
SwiGLU(),
|
262 |
+
nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False),
|
263 |
+
)
|
264 |
+
|
265 |
+
|
266 |
+
### Attention
|
267 |
+
class MultiHeadAttention(nn.Module):
|
268 |
+
"""Multi-head attention with rotary embeddings.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
d_model: Model dimension
|
272 |
+
n_heads: Number of attention heads
|
273 |
+
"""
|
274 |
+
def __init__(self, d_model: int, n_heads: int):
|
275 |
+
super().__init__()
|
276 |
+
self.d_model = d_model
|
277 |
+
self.n_heads = n_heads
|
278 |
+
self.d_head = self.d_model // self.n_heads
|
279 |
+
self.layernorm_qkv = nn.Sequential(
|
280 |
+
nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False)
|
281 |
+
)
|
282 |
+
self.out_proj = nn.Linear(d_model, d_model, bias=False)
|
283 |
+
self.q_ln = nn.LayerNorm(d_model, bias=False)
|
284 |
+
self.k_ln = nn.LayerNorm(d_model, bias=False)
|
285 |
+
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
|
286 |
+
self.rotary = RotaryEmbedding(d_model // n_heads)
|
287 |
+
|
288 |
+
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
289 |
+
"""Apply rotary embeddings to query and key."""
|
290 |
+
q = q.unflatten(-1, (self.n_heads, self.d_head))
|
291 |
+
k = k.unflatten(-1, (self.n_heads, self.d_head))
|
292 |
+
q, k = self.rotary(q, k)
|
293 |
+
q = q.flatten(-2, -1)
|
294 |
+
k = k.flatten(-2, -1)
|
295 |
+
return q, k
|
296 |
+
|
297 |
+
def forward(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
298 |
+
"""
|
299 |
+
Args:
|
300 |
+
x: Input tensor
|
301 |
+
attention_mask: Optional attention mask
|
302 |
+
output_attentions: Whether to return attention weights
|
303 |
+
|
304 |
+
Returns:
|
305 |
+
Output tensor after self attention, and optionally attention weights
|
306 |
+
"""
|
307 |
+
attn_weights = None
|
308 |
+
qkv_BLD3 = self.layernorm_qkv(x)
|
309 |
+
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
|
310 |
+
query_BLD, key_BLD = (
|
311 |
+
self.q_ln(query_BLD).to(query_BLD.dtype),
|
312 |
+
self.k_ln(key_BLD).to(query_BLD.dtype),
|
313 |
+
)
|
314 |
+
query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD)
|
315 |
+
query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD))
|
316 |
+
|
317 |
+
if output_attentions: # Manual attention computation
|
318 |
+
L, S = query_BLD.size(-2), key_BLD.size(-2)
|
319 |
+
scale = 1 / math.sqrt(query_BLD.size(-1))
|
320 |
+
attn_bias = torch.zeros(L, S, dtype=query_BLD.dtype, device=query_BLD.device)
|
321 |
+
if attention_mask is not None:
|
322 |
+
if attention_mask.dtype == torch.bool:
|
323 |
+
attention_mask.masked_fill_(attention_mask.logical_not(), float('-inf'))
|
324 |
+
else:
|
325 |
+
attn_bias += attention_mask
|
326 |
+
|
327 |
+
attn_weights = torch.matmul(query_BHLD, key_BHLD.transpose(-2, -1)) * scale
|
328 |
+
attn_weights += attn_bias
|
329 |
+
attn_weights = F.softmax(attn_weights, dim=-1)
|
330 |
+
context_BHLD = torch.matmul(attn_weights, value_BHLD)
|
331 |
+
else:
|
332 |
+
context_BHLD = F.scaled_dot_product_attention(
|
333 |
+
query_BHLD, key_BHLD, value_BHLD, attention_mask
|
334 |
+
)
|
335 |
+
|
336 |
+
context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)")
|
337 |
+
output = self.out_proj(context_BLD)
|
338 |
+
return output, attn_weights
|
339 |
+
|
340 |
+
|
341 |
+
### Regression Head
|
342 |
+
def RegressionHead(d_model: int, output_dim: int, hidden_dim: Optional[int] = None) -> nn.Module:
|
343 |
+
"""Create a regression head with optional hidden dimension.
|
344 |
+
|
345 |
+
Args:
|
346 |
+
d_model: Input dimension
|
347 |
+
output_dim: Output dimension
|
348 |
+
hidden_dim: Optional hidden dimension (defaults to d_model)
|
349 |
+
"""
|
350 |
+
hidden_dim = hidden_dim if hidden_dim is not None else d_model
|
351 |
+
return nn.Sequential(
|
352 |
+
nn.Linear(d_model, hidden_dim),
|
353 |
+
nn.GELU(),
|
354 |
+
nn.LayerNorm(hidden_dim),
|
355 |
+
nn.Linear(hidden_dim, output_dim),
|
356 |
+
)
|
357 |
+
|
358 |
+
|
359 |
+
### Transformer Block
|
360 |
+
class UnifiedTransformerBlock(nn.Module):
|
361 |
+
"""Transformer block with attention and feedforward layers.
|
362 |
+
|
363 |
+
Args:
|
364 |
+
d_model: Model dimension
|
365 |
+
n_heads: Number of attention heads
|
366 |
+
residue_scaling_factor: Factor for scaling residual connections
|
367 |
+
expansion_ratio: Expansion ratio for feedforward network
|
368 |
+
"""
|
369 |
+
def __init__(
|
370 |
+
self,
|
371 |
+
d_model: int,
|
372 |
+
n_heads: int,
|
373 |
+
residue_scaling_factor: float = 1,
|
374 |
+
expansion_ratio: float = 8 / 3,
|
375 |
+
dropout: float = 0.0,
|
376 |
+
):
|
377 |
+
super().__init__()
|
378 |
+
self.attn = MultiHeadAttention(d_model, n_heads)
|
379 |
+
self.ffn = swiglu_ln_ffn(d_model, expansion_ratio)
|
380 |
+
self.scaling_factor = residue_scaling_factor
|
381 |
+
self.dropout = nn.Dropout(dropout)
|
382 |
+
|
383 |
+
def forward(
|
384 |
+
self,
|
385 |
+
x: torch.Tensor,
|
386 |
+
attention_mask: Optional[torch.Tensor] = None,
|
387 |
+
output_attentions: bool = False,
|
388 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
389 |
+
"""
|
390 |
+
Args:
|
391 |
+
x: Input tensor
|
392 |
+
attention_mask: Optional attention mask
|
393 |
+
output_attentions: Whether to return attention weights
|
394 |
+
|
395 |
+
Returns:
|
396 |
+
Output tensor after transformer block, and optionally attention weights
|
397 |
+
"""
|
398 |
+
attn_output, attn_weights = self.attn(x, attention_mask, output_attentions)
|
399 |
+
x = x + self.dropout(attn_output) / self.scaling_factor
|
400 |
+
x = x + self.dropout(self.ffn(x)) / self.scaling_factor
|
401 |
+
return x, attn_weights
|
402 |
+
|
403 |
+
|
404 |
+
### Model Outputs
|
405 |
+
@dataclass
|
406 |
+
class TransformerOutput(ModelOutput):
|
407 |
+
"""Output type for transformer encoder."""
|
408 |
+
last_hidden_state: Optional[torch.Tensor] = None
|
409 |
+
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
410 |
+
attentions: Optional[Tuple[torch.Tensor]] = None
|
411 |
+
|
412 |
+
|
413 |
+
@dataclass
|
414 |
+
class ESMplusplusOutput(ModelOutput):
|
415 |
+
"""Output type for ESM++ models."""
|
416 |
+
loss: Optional[torch.Tensor] = None
|
417 |
+
logits: Optional[torch.Tensor] = None
|
418 |
+
last_hidden_state: Optional[torch.Tensor] = None
|
419 |
+
hidden_states: Optional[Tuple[torch.Tensor]] = None
|
420 |
+
attentions: Optional[Tuple[torch.Tensor]] = None
|
421 |
+
|
422 |
+
|
423 |
+
### Transformer Stack
|
424 |
+
class TransformerStack(nn.Module):
|
425 |
+
"""Stack of transformer blocks.
|
426 |
+
|
427 |
+
Args:
|
428 |
+
d_model: Model dimension
|
429 |
+
n_heads: Number of attention heads
|
430 |
+
n_layers: Number of transformer layers
|
431 |
+
dropout: Dropout rate
|
432 |
+
"""
|
433 |
+
def __init__(
|
434 |
+
self,
|
435 |
+
d_model: int,
|
436 |
+
n_heads: int,
|
437 |
+
n_layers: int,
|
438 |
+
dropout: float = 0.0,
|
439 |
+
):
|
440 |
+
super().__init__()
|
441 |
+
self.blocks = nn.ModuleList(
|
442 |
+
[
|
443 |
+
UnifiedTransformerBlock(
|
444 |
+
d_model,
|
445 |
+
n_heads,
|
446 |
+
residue_scaling_factor=math.sqrt(n_layers / 36),
|
447 |
+
dropout=dropout,
|
448 |
+
)
|
449 |
+
for i in range(n_layers)
|
450 |
+
]
|
451 |
+
)
|
452 |
+
self.norm = nn.LayerNorm(d_model, bias=False)
|
453 |
+
self.gradient_checkpointing = False
|
454 |
+
|
455 |
+
def forward(
|
456 |
+
self,
|
457 |
+
x: torch.Tensor,
|
458 |
+
attention_mask: Optional[torch.Tensor] = None,
|
459 |
+
output_hidden_states: bool = False,
|
460 |
+
output_attentions: bool = False,
|
461 |
+
) -> TransformerOutput:
|
462 |
+
"""
|
463 |
+
Args:
|
464 |
+
x: Input tensor
|
465 |
+
attention_mask: Optional attention mask
|
466 |
+
output_hidden_states: Whether to return all hidden states
|
467 |
+
output_attentions: Whether to return attention weights
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
471 |
+
"""
|
472 |
+
batch_size, seq_len, _ = x.shape
|
473 |
+
hidden_states = () if output_hidden_states else None
|
474 |
+
attentions = () if output_attentions else None
|
475 |
+
|
476 |
+
if attention_mask is not None:
|
477 |
+
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
|
478 |
+
|
479 |
+
for block in self.blocks:
|
480 |
+
if self.gradient_checkpointing and self.training:
|
481 |
+
x, attn_weights = self._gradient_checkpointing_func(
|
482 |
+
block.__call__,
|
483 |
+
x,
|
484 |
+
attention_mask,
|
485 |
+
output_attentions,
|
486 |
+
)
|
487 |
+
else:
|
488 |
+
x, attn_weights = block(x, attention_mask, output_attentions)
|
489 |
+
|
490 |
+
if attentions is not None:
|
491 |
+
attentions += (attn_weights,)
|
492 |
+
|
493 |
+
if output_hidden_states:
|
494 |
+
assert hidden_states is not None
|
495 |
+
hidden_states += (x,)
|
496 |
+
|
497 |
+
return TransformerOutput(
|
498 |
+
last_hidden_state=self.norm(x),
|
499 |
+
hidden_states=hidden_states,
|
500 |
+
attentions=attentions
|
501 |
+
)
|
502 |
+
|
503 |
+
|
504 |
+
### Dataset for Embedding
|
505 |
+
class ProteinDataset(Dataset):
|
506 |
+
"""Simple dataset for protein sequences."""
|
507 |
+
def __init__(self, sequences: list[str]):
|
508 |
+
self.sequences = sequences
|
509 |
+
|
510 |
+
def __len__(self) -> int:
|
511 |
+
return len(self.sequences)
|
512 |
+
|
513 |
+
def __getitem__(self, idx: int) -> str:
|
514 |
+
return self.sequences[idx]
|
515 |
+
|
516 |
+
|
517 |
+
class PreTrainedESMplusplusModel(PreTrainedModel):
|
518 |
+
"""
|
519 |
+
init weights for ESM++ models
|
520 |
+
"""
|
521 |
+
config_class = ESMplusplusConfig
|
522 |
+
base_model_prefix = "esm++"
|
523 |
+
supports_gradient_checkpointing = True
|
524 |
+
|
525 |
+
def _init_weights(self, module):
|
526 |
+
"""Initialize the weights"""
|
527 |
+
if isinstance(module, nn.Linear):
|
528 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
529 |
+
if module.bias is not None:
|
530 |
+
module.bias.data.zero_()
|
531 |
+
elif isinstance(module, nn.Embedding):
|
532 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
533 |
+
if module.padding_idx is not None:
|
534 |
+
module.weight.data[module.padding_idx].zero_()
|
535 |
+
elif isinstance(module, nn.LayerNorm):
|
536 |
+
if module.bias is not None:
|
537 |
+
module.bias.data.zero_()
|
538 |
+
module.weight.data.fill_(1.0)
|
539 |
+
|
540 |
+
@classmethod
|
541 |
+
def from_pretrained_esm(cls, model_name: str):
|
542 |
+
"""Load a pretrained ESM++ model."""
|
543 |
+
if '300' in model_name:
|
544 |
+
return ESMplusplus_300M()
|
545 |
+
elif '600' in model_name:
|
546 |
+
return ESMplusplus_600M()
|
547 |
+
else:
|
548 |
+
raise ValueError(f"Invalid model name: {model_name}")
|
549 |
+
|
550 |
+
@property
|
551 |
+
def device(self) -> torch.device:
|
552 |
+
"""Get the device of the model."""
|
553 |
+
return next(self.parameters()).device
|
554 |
+
|
555 |
+
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
556 |
+
"""Apply mean pooling to sequence outputs."""
|
557 |
+
if attention_mask is None:
|
558 |
+
return x.mean(dim=1)
|
559 |
+
else:
|
560 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
561 |
+
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
562 |
+
|
563 |
+
def max_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
564 |
+
"""Apply max pooling to sequence outputs."""
|
565 |
+
if attention_mask is None:
|
566 |
+
return x.max(dim=1).values
|
567 |
+
else:
|
568 |
+
attention_mask = attention_mask.unsqueeze(-1)
|
569 |
+
return (x * attention_mask).max(dim=1).values
|
570 |
+
|
571 |
+
def cls_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
572 |
+
"""Apply cls pooling to sequence outputs."""
|
573 |
+
return x[:, 0, :]
|
574 |
+
|
575 |
+
def _collate_fn(self, sequences: list[str]) -> tuple[torch.Tensor, torch.Tensor]:
|
576 |
+
"""Collate function for batching sequences."""
|
577 |
+
return self.tokenizer(sequences, return_tensors="pt", padding='longest', pad_to_multiple_of=8)
|
578 |
+
|
579 |
+
def _read_sequences_from_db(self, db_path: str) -> set[str]:
|
580 |
+
"""Read sequences from SQLite database."""
|
581 |
+
import sqlite3
|
582 |
+
sequences = []
|
583 |
+
with sqlite3.connect(db_path) as conn:
|
584 |
+
c = conn.cursor()
|
585 |
+
c.execute("SELECT sequence FROM embeddings")
|
586 |
+
while True:
|
587 |
+
row = c.fetchone()
|
588 |
+
if row is None:
|
589 |
+
break
|
590 |
+
sequences.append(row[0])
|
591 |
+
return set(sequences)
|
592 |
+
|
593 |
+
def embed_dataset(
|
594 |
+
self,
|
595 |
+
sequences: list[str],
|
596 |
+
batch_size: int = 2,
|
597 |
+
max_len: int = 512,
|
598 |
+
full_embeddings: bool = False,
|
599 |
+
full_precision: bool = False,
|
600 |
+
pooling_type: str = 'mean',
|
601 |
+
num_workers: int = 0,
|
602 |
+
sql: bool = False,
|
603 |
+
sql_db_path: str = 'embeddings.db',
|
604 |
+
) -> Optional[dict[str, torch.Tensor]]:
|
605 |
+
"""Embed a dataset of protein sequences.
|
606 |
+
|
607 |
+
Args:
|
608 |
+
sequences: List of protein sequences
|
609 |
+
batch_size: Batch size for processing
|
610 |
+
max_len: Maximum sequence length
|
611 |
+
full_embeddings: Whether to return full residue-wise (True) embeddings or pooled (False)
|
612 |
+
full_precision: Whether to cast to full precision (float32) before storage - relevant for dict storage
|
613 |
+
pooling_type: Type of pooling ('mean' or 'cls')
|
614 |
+
num_workers: Number of workers for data loading, 0 for the main process
|
615 |
+
sql: Whether to store embeddings in SQLite database - will be stored in float32
|
616 |
+
sql_db_path: Path to SQLite database
|
617 |
+
|
618 |
+
Returns:
|
619 |
+
Dictionary mapping sequences to embeddings, or None if sql=True
|
620 |
+
"""
|
621 |
+
sequences = list(set([seq[:max_len] for seq in sequences]))
|
622 |
+
device = self.device
|
623 |
+
|
624 |
+
def get_embeddings(residue_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
625 |
+
if full_embeddings:
|
626 |
+
return residue_embeddings
|
627 |
+
elif pooling_type == 'mean':
|
628 |
+
return self.mean_pooling(residue_embeddings, attention_mask)
|
629 |
+
elif pooling_type == 'max':
|
630 |
+
return self.max_pooling(residue_embeddings, attention_mask)
|
631 |
+
elif pooling_type == 'cls':
|
632 |
+
return self.cls_pooling(residue_embeddings, attention_mask)
|
633 |
+
else:
|
634 |
+
raise ValueError(f"Invalid pooling type: {pooling_type}")
|
635 |
+
|
636 |
+
sequences = list(set([seq[:max_len] for seq in sequences]))
|
637 |
+
if sql:
|
638 |
+
import sqlite3
|
639 |
+
conn = sqlite3.connect(sql_db_path)
|
640 |
+
c = conn.cursor()
|
641 |
+
c.execute('CREATE TABLE IF NOT EXISTS embeddings (sequence text PRIMARY KEY, embedding blob)')
|
642 |
+
already_embedded = self._read_sequences_from_db(sql_db_path)
|
643 |
+
to_embed = [seq for seq in sequences if seq not in already_embedded]
|
644 |
+
print(f"Found {len(already_embedded)} already embedded sequences in {sql_db_path}")
|
645 |
+
print(f"Embedding {len(to_embed)} new sequences")
|
646 |
+
if len(to_embed) > 0:
|
647 |
+
to_embed = sorted(to_embed, key=len, reverse=True)
|
648 |
+
dataset = ProteinDataset(to_embed)
|
649 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn, shuffle=False)
|
650 |
+
with torch.no_grad():
|
651 |
+
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
652 |
+
seqs = to_embed[i * batch_size:(i + 1) * batch_size]
|
653 |
+
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
654 |
+
x = self.embed(input_ids)
|
655 |
+
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach().float() # required for sql
|
656 |
+
embeddings = get_embeddings(residue_embeddings, attention_mask)
|
657 |
+
|
658 |
+
for seq, emb, mask in zip(seqs, embeddings, attention_mask):
|
659 |
+
if full_embeddings:
|
660 |
+
emb = emb[mask.bool()]
|
661 |
+
c.execute("INSERT OR REPLACE INTO embeddings VALUES (?, ?)",
|
662 |
+
(seq, emb.cpu().numpy().tobytes()))
|
663 |
+
|
664 |
+
if (i + 1) % 100 == 0:
|
665 |
+
conn.commit()
|
666 |
+
|
667 |
+
conn.commit()
|
668 |
+
conn.close()
|
669 |
+
return None
|
670 |
+
|
671 |
+
embeddings_dict = {}
|
672 |
+
sequences = sorted(sequences, key=len, reverse=True)
|
673 |
+
dataset = ProteinDataset(sequences)
|
674 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=self._collate_fn, shuffle=False)
|
675 |
+
with torch.no_grad():
|
676 |
+
for i, batch in tqdm(enumerate(dataloader), total=len(dataloader), desc='Embedding batches'):
|
677 |
+
seqs = sequences[i * batch_size:(i + 1) * batch_size]
|
678 |
+
input_ids, attention_mask = batch['input_ids'].to(device), batch['attention_mask'].to(device)
|
679 |
+
x = self.embed(input_ids)
|
680 |
+
residue_embeddings = self.transformer(x, attention_mask).last_hidden_state.detach()
|
681 |
+
if full_precision:
|
682 |
+
residue_embeddings = residue_embeddings.float()
|
683 |
+
embeddings = get_embeddings(residue_embeddings, attention_mask).cpu()
|
684 |
+
for seq, emb in zip(seqs, embeddings):
|
685 |
+
embeddings_dict[seq] = emb
|
686 |
+
|
687 |
+
return embeddings_dict
|
688 |
+
|
689 |
+
|
690 |
+
### ESM++ Models
|
691 |
+
class ESMplusplusModel(PreTrainedESMplusplusModel):
|
692 |
+
"""
|
693 |
+
ESM++ model. transformer model with no heads
|
694 |
+
"""
|
695 |
+
config_class = ESMplusplusConfig
|
696 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
697 |
+
super().__init__(config, **kwargs)
|
698 |
+
self.config = config
|
699 |
+
self.vocab_size = config.vocab_size
|
700 |
+
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
701 |
+
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
702 |
+
self.tokenizer = EsmSequenceTokenizer()
|
703 |
+
self.init_weights()
|
704 |
+
|
705 |
+
def get_input_embeddings(self):
|
706 |
+
return self.embed
|
707 |
+
|
708 |
+
def set_input_embeddings(self, value):
|
709 |
+
self.embed = value
|
710 |
+
|
711 |
+
def forward(
|
712 |
+
self,
|
713 |
+
input_ids: Optional[torch.Tensor] = None,
|
714 |
+
attention_mask: Optional[torch.Tensor] = None,
|
715 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
716 |
+
output_attentions: Optional[bool] = None,
|
717 |
+
output_hidden_states: Optional[bool] = None,
|
718 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
719 |
+
) -> TransformerOutput:
|
720 |
+
"""Forward pass for masked language modeling.
|
721 |
+
|
722 |
+
Args:
|
723 |
+
input_ids: Input token IDs
|
724 |
+
attention_mask: Attention mask
|
725 |
+
inputs_embeds: Optional precomputed embeddings
|
726 |
+
output_hidden_states: Whether to return all hidden states
|
727 |
+
output_attentions: Whether to return attention weights
|
728 |
+
|
729 |
+
Returns:
|
730 |
+
TransformerOutput containing last hidden state and optionally all hidden states and attention weights
|
731 |
+
"""
|
732 |
+
if inputs_embeds is None:
|
733 |
+
x = self.embed(input_ids)
|
734 |
+
else:
|
735 |
+
x = inputs_embeds
|
736 |
+
return self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
737 |
+
|
738 |
+
|
739 |
+
class ESMplusplusForMaskedLM(PreTrainedESMplusplusModel):
|
740 |
+
"""
|
741 |
+
ESM++ model for masked language modeling.
|
742 |
+
Implements the base ESM++ architecture with a masked language modeling head.
|
743 |
+
"""
|
744 |
+
config_class = ESMplusplusConfig
|
745 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
746 |
+
super().__init__(config, **kwargs)
|
747 |
+
self.config = config
|
748 |
+
self.vocab_size = config.vocab_size
|
749 |
+
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
750 |
+
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers, config.dropout)
|
751 |
+
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
|
752 |
+
self.ce_loss = nn.CrossEntropyLoss()
|
753 |
+
self.tokenizer = EsmSequenceTokenizer()
|
754 |
+
self.init_weights()
|
755 |
+
|
756 |
+
def get_input_embeddings(self):
|
757 |
+
return self.embed
|
758 |
+
|
759 |
+
def set_input_embeddings(self, value):
|
760 |
+
self.embed = value
|
761 |
+
|
762 |
+
def get_output_embeddings(self):
|
763 |
+
return self.sequence_head[-1]
|
764 |
+
|
765 |
+
def set_output_embeddings(self, new_embeddings):
|
766 |
+
self.sequence_head[-1] = new_embeddings
|
767 |
+
|
768 |
+
def forward(
|
769 |
+
self,
|
770 |
+
input_ids: Optional[torch.Tensor] = None,
|
771 |
+
attention_mask: Optional[torch.Tensor] = None,
|
772 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
773 |
+
labels: Optional[torch.Tensor] = None,
|
774 |
+
output_attentions: Optional[bool] = None,
|
775 |
+
output_hidden_states: Optional[bool] = None,
|
776 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
777 |
+
) -> ESMplusplusOutput:
|
778 |
+
"""Forward pass for masked language modeling.
|
779 |
+
|
780 |
+
Args:
|
781 |
+
input_ids: Input token IDs
|
782 |
+
attention_mask: Attention mask
|
783 |
+
inputs_embeds: Optional precomputed embeddings
|
784 |
+
labels: Optional labels for masked tokens
|
785 |
+
output_hidden_states: Whether to return all hidden states
|
786 |
+
output_attentions: Whether to return attention weights
|
787 |
+
|
788 |
+
Returns:
|
789 |
+
ESMplusplusOutput containing loss, logits, hidden states and attention weights
|
790 |
+
"""
|
791 |
+
if inputs_embeds is None:
|
792 |
+
x = self.embed(input_ids)
|
793 |
+
else:
|
794 |
+
x = inputs_embeds
|
795 |
+
output = self.transformer(x, attention_mask, output_hidden_states, output_attentions)
|
796 |
+
x = output.last_hidden_state
|
797 |
+
logits = self.sequence_head(x)
|
798 |
+
loss = None
|
799 |
+
if labels is not None:
|
800 |
+
loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1))
|
801 |
+
return ESMplusplusOutput(
|
802 |
+
loss=loss,
|
803 |
+
logits=logits,
|
804 |
+
last_hidden_state=x,
|
805 |
+
hidden_states=output.hidden_states,
|
806 |
+
attentions=output.attentions,
|
807 |
+
)
|
808 |
+
|
809 |
+
|
810 |
+
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
811 |
+
"""
|
812 |
+
ESM++ model for sequence classification.
|
813 |
+
Extends the base ESM++ model with a classification head.
|
814 |
+
"""
|
815 |
+
def __init__(self, config: ESMplusplusConfig, **kwargs):
|
816 |
+
super().__init__(config, **kwargs)
|
817 |
+
self.config = config
|
818 |
+
self.num_labels = config.num_labels
|
819 |
+
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
|
820 |
+
# Large intermediate projections help with sequence classification tasks (*4)
|
821 |
+
self.mse = nn.MSELoss()
|
822 |
+
self.ce = nn.CrossEntropyLoss()
|
823 |
+
self.bce = nn.BCEWithLogitsLoss()
|
824 |
+
self.init_weights()
|
825 |
+
|
826 |
+
def forward(
|
827 |
+
self,
|
828 |
+
input_ids: Optional[torch.Tensor] = None,
|
829 |
+
attention_mask: Optional[torch.Tensor] = None,
|
830 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
831 |
+
labels: Optional[torch.Tensor] = None,
|
832 |
+
output_attentions: Optional[bool] = None,
|
833 |
+
output_hidden_states: Optional[bool] = None,
|
834 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
835 |
+
) -> ESMplusplusOutput:
|
836 |
+
"""Forward pass for sequence classification.
|
837 |
+
|
838 |
+
Args:
|
839 |
+
input_ids: Input token IDs
|
840 |
+
attention_mask: Attention mask
|
841 |
+
inputs_embeds: Optional precomputed embeddings
|
842 |
+
labels: Optional labels for classification
|
843 |
+
output_hidden_states: Whether to return all hidden states
|
844 |
+
output_attentions: Whether to return attention weights
|
845 |
+
|
846 |
+
Returns:
|
847 |
+
ESMplusplusOutput containing loss, logits, and hidden states
|
848 |
+
"""
|
849 |
+
output = super().forward(
|
850 |
+
input_ids=input_ids,
|
851 |
+
attention_mask=attention_mask,
|
852 |
+
inputs_embeds=inputs_embeds,
|
853 |
+
labels=None,
|
854 |
+
output_attentions=output_attentions,
|
855 |
+
output_hidden_states=output_hidden_states
|
856 |
+
)
|
857 |
+
x = output.last_hidden_state
|
858 |
+
cls_features = x[:, 0, :]
|
859 |
+
mean_features = self.mean_pooling(x, attention_mask)
|
860 |
+
# we include mean pooling features to help with early convergence, the cost of this is basically zero
|
861 |
+
features = torch.cat([cls_features, mean_features], dim=-1)
|
862 |
+
logits = self.classifier(features)
|
863 |
+
loss = None
|
864 |
+
if labels is not None:
|
865 |
+
labels = labels.to(logits.device)
|
866 |
+
if self.config.problem_type is None:
|
867 |
+
if self.num_labels == 1:
|
868 |
+
self.config.problem_type = "regression"
|
869 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
870 |
+
self.config.problem_type = "single_label_classification"
|
871 |
+
else:
|
872 |
+
self.config.problem_type = "multi_label_classification"
|
873 |
+
|
874 |
+
if self.config.problem_type == "regression":
|
875 |
+
if self.num_labels == 1:
|
876 |
+
loss = self.mse(logits.flatten(), labels.flatten())
|
877 |
+
else:
|
878 |
+
loss = self.mse(logits, labels)
|
879 |
+
elif self.config.problem_type == "single_label_classification":
|
880 |
+
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
|
881 |
+
elif self.config.problem_type == "multi_label_classification":
|
882 |
+
loss = self.bce(logits, labels)
|
883 |
+
return ESMplusplusOutput(
|
884 |
+
loss=loss,
|
885 |
+
logits=logits,
|
886 |
+
last_hidden_state=x,
|
887 |
+
hidden_states=output.hidden_states,
|
888 |
+
)
|
889 |
+
|
890 |
+
|
891 |
+
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
|
892 |
+
"""
|
893 |
+
ESM++ model for token classification.
|
894 |
+
Extends the base ESM++ model with a token classification head.
|
895 |
+
"""
|
896 |
+
def __init__(self, config: ESMplusplusConfig):
|
897 |
+
super().__init__(config)
|
898 |
+
self.config = config
|
899 |
+
self.num_labels = config.num_labels
|
900 |
+
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
|
901 |
+
# Large intermediate projections help with sequence classification tasks (*4)
|
902 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
903 |
+
self.init_weights()
|
904 |
+
|
905 |
+
def forward(
|
906 |
+
self,
|
907 |
+
input_ids: Optional[torch.Tensor] = None,
|
908 |
+
attention_mask: Optional[torch.Tensor] = None,
|
909 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
910 |
+
labels: Optional[torch.Tensor] = None,
|
911 |
+
output_attentions: Optional[bool] = None,
|
912 |
+
output_hidden_states: Optional[bool] = None,
|
913 |
+
return_dict: Optional[bool] = None, # to play nice with HF adjacent packages
|
914 |
+
) -> ESMplusplusOutput:
|
915 |
+
"""Forward pass for token classification.
|
916 |
+
|
917 |
+
Args:
|
918 |
+
input_ids: Input token IDs
|
919 |
+
attention_mask: Attention mask
|
920 |
+
inputs_embeds: Optional precomputed embeddings
|
921 |
+
labels: Optional labels for token classification
|
922 |
+
output_hidden_states: Whether to return all hidden states
|
923 |
+
output_attentions: Whether to return attention weights
|
924 |
+
|
925 |
+
Returns:
|
926 |
+
ESMplusplusOutput containing loss, logits, and hidden states
|
927 |
+
"""
|
928 |
+
output = super().forward(
|
929 |
+
input_ids=input_ids,
|
930 |
+
attention_mask=attention_mask,
|
931 |
+
inputs_embeds=inputs_embeds,
|
932 |
+
labels=None,
|
933 |
+
output_attentions=output_attentions,
|
934 |
+
output_hidden_states=output_hidden_states
|
935 |
+
)
|
936 |
+
x = output.last_hidden_state
|
937 |
+
logits = self.classifier(x)
|
938 |
+
loss = None
|
939 |
+
if labels is not None:
|
940 |
+
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
941 |
+
return ESMplusplusOutput(
|
942 |
+
loss=loss,
|
943 |
+
logits=logits,
|
944 |
+
last_hidden_state=x,
|
945 |
+
hidden_states=output.hidden_states,
|
946 |
+
)
|
947 |
+
|
948 |
+
|
949 |
+
### Loading from EvolutionaryScale
|
950 |
+
@staticmethod
|
951 |
+
@cache
|
952 |
+
def data_root(model: str):
|
953 |
+
if "INFRA_PROVIDER" in os.environ:
|
954 |
+
return Path("")
|
955 |
+
# Try to download from hugginface if it doesn't exist
|
956 |
+
if model.startswith("esmc-300"):
|
957 |
+
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12"))
|
958 |
+
elif model.startswith("esmc-600"):
|
959 |
+
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12"))
|
960 |
+
else:
|
961 |
+
raise ValueError(f"{model=} is an invalid model name.")
|
962 |
+
return path
|
963 |
+
|
964 |
+
|
965 |
+
def ESMplusplus_300M(device: torch.device | str = "cpu"):
|
966 |
+
with torch.device(device):
|
967 |
+
config = ESMplusplusConfig(
|
968 |
+
hidden_size=960,
|
969 |
+
num_attention_heads=15,
|
970 |
+
num_hidden_layers=30,
|
971 |
+
)
|
972 |
+
model = ESMplusplusForMaskedLM(config)
|
973 |
+
state_dict = torch.load(
|
974 |
+
data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth",
|
975 |
+
map_location=device,
|
976 |
+
)
|
977 |
+
model.load_state_dict(state_dict)
|
978 |
+
return model
|
979 |
+
|
980 |
+
|
981 |
+
def ESMplusplus_600M(device: torch.device | str = "cpu"):
|
982 |
+
with torch.device(device):
|
983 |
+
config = ESMplusplusConfig(
|
984 |
+
hidden_size=1152,
|
985 |
+
num_attention_heads=18,
|
986 |
+
num_hidden_layers=36,
|
987 |
+
)
|
988 |
+
model = ESMplusplusForMaskedLM(config)
|
989 |
+
state_dict = torch.load(
|
990 |
+
data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth",
|
991 |
+
map_location=device,
|
992 |
+
)
|
993 |
+
model.load_state_dict(state_dict)
|
994 |
+
return model
|
995 |
+
|
996 |
+
|
997 |
+
### Tokenization
|
998 |
+
SEQUENCE_VOCAB = [
|
999 |
+
"<cls>", "<pad>", "<eos>", "<unk>",
|
1000 |
+
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
|
1001 |
+
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
|
1002 |
+
"O", ".", "-", "|",
|
1003 |
+
"<mask>",
|
1004 |
+
]
|
1005 |
+
|
1006 |
+
class EsmSequenceTokenizer(PreTrainedTokenizerFast):
|
1007 |
+
model_input_names = ["input_ids", "attention_mask"]
|
1008 |
+
|
1009 |
+
def __init__(
|
1010 |
+
self,
|
1011 |
+
unk_token="<unk>",
|
1012 |
+
cls_token="<cls>",
|
1013 |
+
pad_token="<pad>",
|
1014 |
+
mask_token="<mask>",
|
1015 |
+
eos_token="<eos>",
|
1016 |
+
chain_break_token="|",
|
1017 |
+
**kwargs,
|
1018 |
+
):
|
1019 |
+
all_tokens = SEQUENCE_VOCAB
|
1020 |
+
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}
|
1021 |
+
|
1022 |
+
# a character-level tokenizer is the same as BPE with no token merges
|
1023 |
+
bpe = BPE(token_to_id, merges=[], unk_token=unk_token)
|
1024 |
+
tokenizer = Tokenizer(bpe)
|
1025 |
+
special_tokens = [
|
1026 |
+
cls_token,
|
1027 |
+
pad_token,
|
1028 |
+
mask_token,
|
1029 |
+
eos_token,
|
1030 |
+
chain_break_token,
|
1031 |
+
]
|
1032 |
+
self.cb_token = chain_break_token
|
1033 |
+
additional_special_tokens = [chain_break_token]
|
1034 |
+
|
1035 |
+
tokenizer.add_special_tokens(special_tokens)
|
1036 |
+
|
1037 |
+
# This is where we configure the automatic addition of special tokens when we call
|
1038 |
+
# tokenizer(text, add_special_tokens=True). Note that you can also configure how two
|
1039 |
+
# sequences are merged if you want.
|
1040 |
+
tokenizer.post_processor = TemplateProcessing( # type: ignore
|
1041 |
+
single="<cls> $A <eos>",
|
1042 |
+
special_tokens=[
|
1043 |
+
("<cls>", tokenizer.token_to_id("<cls>")),
|
1044 |
+
("<eos>", tokenizer.token_to_id("<eos>")),
|
1045 |
+
],
|
1046 |
+
)
|
1047 |
+
super().__init__(
|
1048 |
+
tokenizer_object=tokenizer,
|
1049 |
+
unk_token=unk_token,
|
1050 |
+
cls_token=cls_token,
|
1051 |
+
pad_token=pad_token,
|
1052 |
+
mask_token=mask_token,
|
1053 |
+
eos_token=eos_token,
|
1054 |
+
additional_special_tokens=additional_special_tokens,
|
1055 |
+
**kwargs,
|
1056 |
+
)
|
1057 |
+
|
1058 |
+
# These are a footgun, we never use the `bos` token anywhere so we're just overriding it here.
|
1059 |
+
@property
|
1060 |
+
def bos_token(self):
|
1061 |
+
return self.cls_token
|
1062 |
+
|
1063 |
+
@property
|
1064 |
+
def bos_token_id(self):
|
1065 |
+
return self.cls_token_id
|
1066 |
+
|
1067 |
+
@property
|
1068 |
+
def chain_break_token(self):
|
1069 |
+
return self.cb_token
|
1070 |
+
|
1071 |
+
@property
|
1072 |
+
def chain_break_token_id(self):
|
1073 |
+
return self.convert_tokens_to_ids(self.chain_break_token)
|
1074 |
+
|
1075 |
+
@property
|
1076 |
+
def all_token_ids(self):
|
1077 |
+
return list(range(self.vocab_size))
|
1078 |
+
|
1079 |
+
@property
|
1080 |
+
def special_token_ids(self):
|
1081 |
+
return self.all_special_ids
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65da6c60c1bce7631099ae5107c966b1a6a140c7ab5e6f84f6332b574580e612
|
3 |
+
size 212600235
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79246c8e03186bc8a2eecef837174b61b169a5f4a4f659bfa3b5a475f95bb0a0
|
3 |
+
size 2342537950
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb85e4337de2376f71e4e72e2c65a95701ab80e2018c4e3c0cdfcbdb0b0c6947
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5c41e07b12a2ac2fb1a259324594e38d5300825b5c8641ee7574777826112ae
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"|"
|
4 |
+
],
|
5 |
+
"cls_token": "<cls>",
|
6 |
+
"eos_token": "<eos>",
|
7 |
+
"mask_token": "<mask>",
|
8 |
+
"pad_token": "<pad>",
|
9 |
+
"unk_token": "<unk>"
|
10 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
5 |
+
"added_tokens": [
|
6 |
+
{
|
7 |
+
"id": 0,
|
8 |
+
"content": "<cls>",
|
9 |
+
"single_word": false,
|
10 |
+
"lstrip": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"special": true
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"id": 1,
|
17 |
+
"content": "<pad>",
|
18 |
+
"single_word": false,
|
19 |
+
"lstrip": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"special": true
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"id": 2,
|
26 |
+
"content": "<eos>",
|
27 |
+
"single_word": false,
|
28 |
+
"lstrip": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"special": true
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"id": 3,
|
35 |
+
"content": "<unk>",
|
36 |
+
"single_word": false,
|
37 |
+
"lstrip": false,
|
38 |
+
"rstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"special": true
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"id": 31,
|
44 |
+
"content": "|",
|
45 |
+
"single_word": false,
|
46 |
+
"lstrip": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"id": 32,
|
53 |
+
"content": "<mask>",
|
54 |
+
"single_word": false,
|
55 |
+
"lstrip": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"special": true
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"normalizer": null,
|
62 |
+
"pre_tokenizer": null,
|
63 |
+
"post_processor": {
|
64 |
+
"type": "TemplateProcessing",
|
65 |
+
"single": [
|
66 |
+
{
|
67 |
+
"SpecialToken": {
|
68 |
+
"id": "<cls>",
|
69 |
+
"type_id": 0
|
70 |
+
}
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"Sequence": {
|
74 |
+
"id": "A",
|
75 |
+
"type_id": 0
|
76 |
+
}
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"SpecialToken": {
|
80 |
+
"id": "<eos>",
|
81 |
+
"type_id": 0
|
82 |
+
}
|
83 |
+
}
|
84 |
+
],
|
85 |
+
"pair": [
|
86 |
+
{
|
87 |
+
"Sequence": {
|
88 |
+
"id": "A",
|
89 |
+
"type_id": 0
|
90 |
+
}
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"Sequence": {
|
94 |
+
"id": "B",
|
95 |
+
"type_id": 1
|
96 |
+
}
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"special_tokens": {
|
100 |
+
"<cls>": {
|
101 |
+
"id": "<cls>",
|
102 |
+
"ids": [
|
103 |
+
0
|
104 |
+
],
|
105 |
+
"tokens": [
|
106 |
+
"<cls>"
|
107 |
+
]
|
108 |
+
},
|
109 |
+
"<eos>": {
|
110 |
+
"id": "<eos>",
|
111 |
+
"ids": [
|
112 |
+
2
|
113 |
+
],
|
114 |
+
"tokens": [
|
115 |
+
"<eos>"
|
116 |
+
]
|
117 |
+
}
|
118 |
+
}
|
119 |
+
},
|
120 |
+
"decoder": null,
|
121 |
+
"model": {
|
122 |
+
"type": "BPE",
|
123 |
+
"dropout": null,
|
124 |
+
"unk_token": "<unk>",
|
125 |
+
"continuing_subword_prefix": null,
|
126 |
+
"end_of_word_suffix": null,
|
127 |
+
"fuse_unk": false,
|
128 |
+
"byte_fallback": false,
|
129 |
+
"ignore_merges": false,
|
130 |
+
"vocab": {
|
131 |
+
"<cls>": 0,
|
132 |
+
"<pad>": 1,
|
133 |
+
"<eos>": 2,
|
134 |
+
"<unk>": 3,
|
135 |
+
"L": 4,
|
136 |
+
"A": 5,
|
137 |
+
"G": 6,
|
138 |
+
"V": 7,
|
139 |
+
"S": 8,
|
140 |
+
"E": 9,
|
141 |
+
"R": 10,
|
142 |
+
"T": 11,
|
143 |
+
"I": 12,
|
144 |
+
"D": 13,
|
145 |
+
"P": 14,
|
146 |
+
"K": 15,
|
147 |
+
"Q": 16,
|
148 |
+
"N": 17,
|
149 |
+
"F": 18,
|
150 |
+
"Y": 19,
|
151 |
+
"M": 20,
|
152 |
+
"H": 21,
|
153 |
+
"W": 22,
|
154 |
+
"C": 23,
|
155 |
+
"X": 24,
|
156 |
+
"B": 25,
|
157 |
+
"U": 26,
|
158 |
+
"Z": 27,
|
159 |
+
"O": 28,
|
160 |
+
".": 29,
|
161 |
+
"-": 30,
|
162 |
+
"|": 31,
|
163 |
+
"<mask>": 32
|
164 |
+
},
|
165 |
+
"merges": []
|
166 |
+
}
|
167 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<cls>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "<eos>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"31": {
|
36 |
+
"content": "|",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"32": {
|
44 |
+
"content": "<mask>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"additional_special_tokens": [
|
53 |
+
"|"
|
54 |
+
],
|
55 |
+
"bos_token": "<cls>",
|
56 |
+
"clean_up_tokenization_spaces": false,
|
57 |
+
"cls_token": "<cls>",
|
58 |
+
"eos_token": "<eos>",
|
59 |
+
"mask_token": "<mask>",
|
60 |
+
"model_max_length": 1000000000000000019884624838656,
|
61 |
+
"pad_token": "<pad>",
|
62 |
+
"tokenizer_class": "EsmSequenceTokenizer",
|
63 |
+
"unk_token": "<unk>"
|
64 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.8709677419354839,
|
3 |
+
"best_model_checkpoint": "ESMC_plus-finetuned-TP53_201AA/checkpoint-800",
|
4 |
+
"epoch": 36.36363636363637,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 2.2727272727272725,
|
13 |
+
"grad_norm": 3.7824575901031494,
|
14 |
+
"learning_rate": 5.6999999999999996e-05,
|
15 |
+
"loss": 0.6625,
|
16 |
+
"step": 50
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 2.2727272727272725,
|
20 |
+
"eval_f1_score": 0.7755102040816326,
|
21 |
+
"eval_loss": 0.5577281713485718,
|
22 |
+
"eval_precision": 0.6855670103092784,
|
23 |
+
"eval_recall": 0.8926174496644296,
|
24 |
+
"eval_roc_auc": 0.7809697045725397,
|
25 |
+
"eval_runtime": 0.5094,
|
26 |
+
"eval_samples_per_second": 693.021,
|
27 |
+
"eval_steps_per_second": 5.89,
|
28 |
+
"step": 50
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 4.545454545454545,
|
32 |
+
"grad_norm": 10.261860847473145,
|
33 |
+
"learning_rate": 5.4000000000000005e-05,
|
34 |
+
"loss": 0.4772,
|
35 |
+
"step": 100
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"epoch": 4.545454545454545,
|
39 |
+
"eval_f1_score": 0.7908496732026143,
|
40 |
+
"eval_loss": 0.5206712484359741,
|
41 |
+
"eval_precision": 0.7707006369426752,
|
42 |
+
"eval_recall": 0.8120805369127517,
|
43 |
+
"eval_roc_auc": 0.80794078906103,
|
44 |
+
"eval_runtime": 0.5068,
|
45 |
+
"eval_samples_per_second": 696.586,
|
46 |
+
"eval_steps_per_second": 5.92,
|
47 |
+
"step": 100
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 6.818181818181818,
|
51 |
+
"grad_norm": 11.708925247192383,
|
52 |
+
"learning_rate": 5.1e-05,
|
53 |
+
"loss": 0.4047,
|
54 |
+
"step": 150
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 6.818181818181818,
|
58 |
+
"eval_f1_score": 0.7753623188405797,
|
59 |
+
"eval_loss": 0.49258285760879517,
|
60 |
+
"eval_precision": 0.84251968503937,
|
61 |
+
"eval_recall": 0.7181208053691275,
|
62 |
+
"eval_roc_auc": 0.8690334316000753,
|
63 |
+
"eval_runtime": 0.5185,
|
64 |
+
"eval_samples_per_second": 680.81,
|
65 |
+
"eval_steps_per_second": 5.786,
|
66 |
+
"step": 150
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 9.090909090909092,
|
70 |
+
"grad_norm": 14.289894104003906,
|
71 |
+
"learning_rate": 4.8e-05,
|
72 |
+
"loss": 0.3611,
|
73 |
+
"step": 200
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 9.090909090909092,
|
77 |
+
"eval_f1_score": 0.7753623188405797,
|
78 |
+
"eval_loss": 0.46306541562080383,
|
79 |
+
"eval_precision": 0.84251968503937,
|
80 |
+
"eval_recall": 0.7181208053691275,
|
81 |
+
"eval_roc_auc": 0.8886658721696042,
|
82 |
+
"eval_runtime": 0.487,
|
83 |
+
"eval_samples_per_second": 724.818,
|
84 |
+
"eval_steps_per_second": 6.16,
|
85 |
+
"step": 200
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 11.363636363636363,
|
89 |
+
"grad_norm": 2.303349494934082,
|
90 |
+
"learning_rate": 4.5e-05,
|
91 |
+
"loss": 0.3402,
|
92 |
+
"step": 250
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 11.363636363636363,
|
96 |
+
"eval_f1_score": 0.8417508417508418,
|
97 |
+
"eval_loss": 0.39569616317749023,
|
98 |
+
"eval_precision": 0.8445945945945946,
|
99 |
+
"eval_recall": 0.8389261744966443,
|
100 |
+
"eval_roc_auc": 0.8988270714420122,
|
101 |
+
"eval_runtime": 0.4881,
|
102 |
+
"eval_samples_per_second": 723.205,
|
103 |
+
"eval_steps_per_second": 6.146,
|
104 |
+
"step": 250
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 13.636363636363637,
|
108 |
+
"grad_norm": 4.852221488952637,
|
109 |
+
"learning_rate": 4.2e-05,
|
110 |
+
"loss": 0.3342,
|
111 |
+
"step": 300
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 13.636363636363637,
|
115 |
+
"eval_f1_score": 0.8617363344051447,
|
116 |
+
"eval_loss": 0.42518067359924316,
|
117 |
+
"eval_precision": 0.8271604938271605,
|
118 |
+
"eval_recall": 0.8993288590604027,
|
119 |
+
"eval_roc_auc": 0.8945618766856928,
|
120 |
+
"eval_runtime": 0.4865,
|
121 |
+
"eval_samples_per_second": 725.541,
|
122 |
+
"eval_steps_per_second": 6.166,
|
123 |
+
"step": 300
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 15.909090909090908,
|
127 |
+
"grad_norm": 5.0347747802734375,
|
128 |
+
"learning_rate": 3.9e-05,
|
129 |
+
"loss": 0.2885,
|
130 |
+
"step": 350
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 15.909090909090908,
|
134 |
+
"eval_f1_score": 0.8571428571428571,
|
135 |
+
"eval_loss": 0.40493202209472656,
|
136 |
+
"eval_precision": 0.8486842105263158,
|
137 |
+
"eval_recall": 0.8657718120805369,
|
138 |
+
"eval_roc_auc": 0.9029668192937339,
|
139 |
+
"eval_runtime": 0.4878,
|
140 |
+
"eval_samples_per_second": 723.589,
|
141 |
+
"eval_steps_per_second": 6.149,
|
142 |
+
"step": 350
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 18.181818181818183,
|
146 |
+
"grad_norm": 1.1147843599319458,
|
147 |
+
"learning_rate": 3.6e-05,
|
148 |
+
"loss": 0.2654,
|
149 |
+
"step": 400
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 18.181818181818183,
|
153 |
+
"eval_f1_score": 0.8304498269896193,
|
154 |
+
"eval_loss": 0.4450823664665222,
|
155 |
+
"eval_precision": 0.8571428571428571,
|
156 |
+
"eval_recall": 0.8053691275167785,
|
157 |
+
"eval_roc_auc": 0.9034058834598256,
|
158 |
+
"eval_runtime": 0.4878,
|
159 |
+
"eval_samples_per_second": 723.718,
|
160 |
+
"eval_steps_per_second": 6.151,
|
161 |
+
"step": 400
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"epoch": 20.454545454545453,
|
165 |
+
"grad_norm": 7.004922866821289,
|
166 |
+
"learning_rate": 3.3e-05,
|
167 |
+
"loss": 0.2596,
|
168 |
+
"step": 450
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 20.454545454545453,
|
172 |
+
"eval_f1_score": 0.8395904436860068,
|
173 |
+
"eval_loss": 0.4173749089241028,
|
174 |
+
"eval_precision": 0.8541666666666666,
|
175 |
+
"eval_recall": 0.825503355704698,
|
176 |
+
"eval_roc_auc": 0.9070438436931568,
|
177 |
+
"eval_runtime": 0.4865,
|
178 |
+
"eval_samples_per_second": 725.609,
|
179 |
+
"eval_steps_per_second": 6.167,
|
180 |
+
"step": 450
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 22.727272727272727,
|
184 |
+
"grad_norm": 2.1273648738861084,
|
185 |
+
"learning_rate": 3e-05,
|
186 |
+
"loss": 0.2366,
|
187 |
+
"step": 500
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 22.727272727272727,
|
191 |
+
"eval_f1_score": 0.8142857142857143,
|
192 |
+
"eval_loss": 0.4525018334388733,
|
193 |
+
"eval_precision": 0.8702290076335878,
|
194 |
+
"eval_recall": 0.7651006711409396,
|
195 |
+
"eval_roc_auc": 0.9105563570218905,
|
196 |
+
"eval_runtime": 0.4875,
|
197 |
+
"eval_samples_per_second": 724.141,
|
198 |
+
"eval_steps_per_second": 6.154,
|
199 |
+
"step": 500
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 25.0,
|
203 |
+
"grad_norm": 4.955398082733154,
|
204 |
+
"learning_rate": 2.7000000000000002e-05,
|
205 |
+
"loss": 0.2306,
|
206 |
+
"step": 550
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 25.0,
|
210 |
+
"eval_f1_score": 0.8350877192982457,
|
211 |
+
"eval_loss": 0.4550461769104004,
|
212 |
+
"eval_precision": 0.875,
|
213 |
+
"eval_recall": 0.7986577181208053,
|
214 |
+
"eval_roc_auc": 0.9146333814213135,
|
215 |
+
"eval_runtime": 0.487,
|
216 |
+
"eval_samples_per_second": 724.913,
|
217 |
+
"eval_steps_per_second": 6.161,
|
218 |
+
"step": 550
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 27.272727272727273,
|
222 |
+
"grad_norm": 1.5066548585891724,
|
223 |
+
"learning_rate": 2.4e-05,
|
224 |
+
"loss": 0.2214,
|
225 |
+
"step": 600
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 27.272727272727273,
|
229 |
+
"eval_f1_score": 0.8542372881355932,
|
230 |
+
"eval_loss": 0.4234406054019928,
|
231 |
+
"eval_precision": 0.863013698630137,
|
232 |
+
"eval_recall": 0.8456375838926175,
|
233 |
+
"eval_roc_auc": 0.9131280185661419,
|
234 |
+
"eval_runtime": 0.487,
|
235 |
+
"eval_samples_per_second": 724.849,
|
236 |
+
"eval_steps_per_second": 6.16,
|
237 |
+
"step": 600
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 29.545454545454547,
|
241 |
+
"grad_norm": 2.199934482574463,
|
242 |
+
"learning_rate": 2.1e-05,
|
243 |
+
"loss": 0.2007,
|
244 |
+
"step": 650
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"epoch": 29.545454545454547,
|
248 |
+
"eval_f1_score": 0.8406779661016949,
|
249 |
+
"eval_loss": 0.4141705632209778,
|
250 |
+
"eval_precision": 0.8493150684931506,
|
251 |
+
"eval_recall": 0.8322147651006712,
|
252 |
+
"eval_roc_auc": 0.9175186602270589,
|
253 |
+
"eval_runtime": 0.4861,
|
254 |
+
"eval_samples_per_second": 726.128,
|
255 |
+
"eval_steps_per_second": 6.171,
|
256 |
+
"step": 650
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"epoch": 31.818181818181817,
|
260 |
+
"grad_norm": 3.5876011848449707,
|
261 |
+
"learning_rate": 1.8e-05,
|
262 |
+
"loss": 0.1869,
|
263 |
+
"step": 700
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 31.818181818181817,
|
267 |
+
"eval_f1_score": 0.8533333333333334,
|
268 |
+
"eval_loss": 0.42080163955688477,
|
269 |
+
"eval_precision": 0.847682119205298,
|
270 |
+
"eval_recall": 0.8590604026845637,
|
271 |
+
"eval_roc_auc": 0.9163896380856803,
|
272 |
+
"eval_runtime": 0.486,
|
273 |
+
"eval_samples_per_second": 726.361,
|
274 |
+
"eval_steps_per_second": 6.173,
|
275 |
+
"step": 700
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 34.09090909090909,
|
279 |
+
"grad_norm": 2.6010570526123047,
|
280 |
+
"learning_rate": 1.5e-05,
|
281 |
+
"loss": 0.1791,
|
282 |
+
"step": 750
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 34.09090909090909,
|
286 |
+
"eval_f1_score": 0.8655737704918033,
|
287 |
+
"eval_loss": 0.405379056930542,
|
288 |
+
"eval_precision": 0.8461538461538461,
|
289 |
+
"eval_recall": 0.8859060402684564,
|
290 |
+
"eval_roc_auc": 0.9218465784356771,
|
291 |
+
"eval_runtime": 0.4871,
|
292 |
+
"eval_samples_per_second": 724.696,
|
293 |
+
"eval_steps_per_second": 6.159,
|
294 |
+
"step": 750
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 36.36363636363637,
|
298 |
+
"grad_norm": 4.041784286499023,
|
299 |
+
"learning_rate": 1.2e-05,
|
300 |
+
"loss": 0.1666,
|
301 |
+
"step": 800
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"epoch": 36.36363636363637,
|
305 |
+
"eval_f1_score": 0.8709677419354839,
|
306 |
+
"eval_loss": 0.4173583388328552,
|
307 |
+
"eval_precision": 0.8385093167701864,
|
308 |
+
"eval_recall": 0.9060402684563759,
|
309 |
+
"eval_roc_auc": 0.9189612996299317,
|
310 |
+
"eval_runtime": 0.4862,
|
311 |
+
"eval_samples_per_second": 725.969,
|
312 |
+
"eval_steps_per_second": 6.17,
|
313 |
+
"step": 800
|
314 |
+
}
|
315 |
+
],
|
316 |
+
"logging_steps": 50,
|
317 |
+
"max_steps": 1000,
|
318 |
+
"num_input_tokens_seen": 0,
|
319 |
+
"num_train_epochs": 46,
|
320 |
+
"save_steps": 50,
|
321 |
+
"stateful_callbacks": {
|
322 |
+
"TrainerControl": {
|
323 |
+
"args": {
|
324 |
+
"should_epoch_stop": false,
|
325 |
+
"should_evaluate": false,
|
326 |
+
"should_log": false,
|
327 |
+
"should_save": true,
|
328 |
+
"should_training_stop": false
|
329 |
+
},
|
330 |
+
"attributes": {}
|
331 |
+
}
|
332 |
+
},
|
333 |
+
"total_flos": 1.9066711283712e+16,
|
334 |
+
"train_batch_size": 128,
|
335 |
+
"trial_name": null,
|
336 |
+
"trial_params": null
|
337 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6cb8550a209622e86a866422a75efe9cb3f0d1718a7f1cd6d94caa3ce9ec57a
|
3 |
+
size 5304
|