cherifkhalifah commited on
Commit
b8be1b1
1 Parent(s): e84b60a

Finetuned model on SNLI

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,479 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L12-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:100000
22
+ - loss:CosineSimilarityLoss
23
+ widget:
24
+ - source_sentence: NIPA personal income includes pension contributions by employers
25
+ in the year income is earned , and benefits paid at retirement are not a component
26
+ of NIPA income .
27
+ sentences:
28
+ - While not the only makeup of income , NIPA is one of the more well known income
29
+ distinctions .
30
+ - Les temples de karnak et de Louxor ont été démolis pour faire place à des projets
31
+ de construction en Cisjordanie .
32
+ - Les restaurants sont tenus à des règles strictes pour contenir leur odeur .
33
+ - source_sentence: right right you know the one that 's one reason we bought a house
34
+ here in Plano we were hoping you know well the school district 's gonna be good
35
+ you know for resale value and so on and so forth but
36
+ sentences:
37
+ - We moved to Plano because we thought the school district was good .
38
+ - These and those .
39
+ - L' obsession a suscité une suggestion que tous étaient des boucs émissaires de
40
+ la guerre .
41
+ - source_sentence: Dans l' homme invisible , le talentueux dixième narrateur doit
42
+ surmonter non seulement les différentes idéologies qui lui sont présentées comme
43
+ masques ou subversions d' identité , mais aussi les différents rôles et prescriptions
44
+ pour le leadership que sa propre race lui souhaite de réaliser .
45
+ sentences:
46
+ - '" We ''re too uptight now ! " Said Tommy'
47
+ - Le talentueux dixième narrateur doit surmonter les idéologies .
48
+ - Saddam is not taking advantage of the current Arab love towards the United States
49
+ - source_sentence: Les lacunes trouvées au cours de la surveillance en cours ou au
50
+ moyen d' évaluations distinctes devraient être communiquées à l' individu responsable
51
+ de la fonction et à au moins un niveau de gestion au-dessus de cet individu .
52
+ sentences:
53
+ - L' économie diminuera également si les conditions du marché changent .
54
+ - The Watergate comparison wasn 't just for Democratic bashing .
55
+ - Il n' y a pas lieu de signaler les lacunes .
56
+ - source_sentence: it looks fertile and it it um i mean it rains enough they have
57
+ the climate and the rain and if not it 's like i 've been to Saint Thomas and
58
+ it just starts from the ocean up
59
+ sentences:
60
+ - Il n' a jamais triché .
61
+ - They don 't know how to do it .
62
+ - They have the rain and the climate so I imagine the lands would be fertile .
63
+ model-index:
64
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
65
+ results:
66
+ - task:
67
+ type: semantic-similarity
68
+ name: Semantic Similarity
69
+ dataset:
70
+ name: snli dev
71
+ type: snli-dev
72
+ metrics:
73
+ - type: pearson_cosine
74
+ value: 0.3725313255221131
75
+ name: Pearson Cosine
76
+ - type: spearman_cosine
77
+ value: 0.3729470854776107
78
+ name: Spearman Cosine
79
+ - type: pearson_manhattan
80
+ value: 0.3650227128515394
81
+ name: Pearson Manhattan
82
+ - type: spearman_manhattan
83
+ value: 0.37250760289182383
84
+ name: Spearman Manhattan
85
+ - type: pearson_euclidean
86
+ value: 0.36567325497563746
87
+ name: Pearson Euclidean
88
+ - type: spearman_euclidean
89
+ value: 0.37294699995093694
90
+ name: Spearman Euclidean
91
+ - type: pearson_dot
92
+ value: 0.3725313190046259
93
+ name: Pearson Dot
94
+ - type: spearman_dot
95
+ value: 0.3729474276296007
96
+ name: Spearman Dot
97
+ - type: pearson_max
98
+ value: 0.3725313255221131
99
+ name: Pearson Max
100
+ - type: spearman_max
101
+ value: 0.3729474276296007
102
+ name: Spearman Max
103
+ ---
104
+
105
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
106
+
107
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
108
+
109
+ ## Model Details
110
+
111
+ ### Model Description
112
+ - **Model Type:** Sentence Transformer
113
+ - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision a05860a77cef7b37e0048a7864658139bc18a854 -->
114
+ - **Maximum Sequence Length:** 128 tokens
115
+ - **Output Dimensionality:** 384 tokens
116
+ - **Similarity Function:** Cosine Similarity
117
+ <!-- - **Training Dataset:** Unknown -->
118
+ <!-- - **Language:** Unknown -->
119
+ <!-- - **License:** Unknown -->
120
+
121
+ ### Model Sources
122
+
123
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
124
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
125
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
126
+
127
+ ### Full Model Architecture
128
+
129
+ ```
130
+ SentenceTransformer(
131
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
132
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
133
+ (2): Normalize()
134
+ )
135
+ ```
136
+
137
+ ## Usage
138
+
139
+ ### Direct Usage (Sentence Transformers)
140
+
141
+ First install the Sentence Transformers library:
142
+
143
+ ```bash
144
+ pip install -U sentence-transformers
145
+ ```
146
+
147
+ Then you can load this model and run inference.
148
+ ```python
149
+ from sentence_transformers import SentenceTransformer
150
+
151
+ # Download from the 🤗 Hub
152
+ model = SentenceTransformer("cherifkhalifah/finetuned-snli-MiniLM-L12-v2-100k-en-fr")
153
+ # Run inference
154
+ sentences = [
155
+ "it looks fertile and it it um i mean it rains enough they have the climate and the rain and if not it 's like i 've been to Saint Thomas and it just starts from the ocean up",
156
+ 'They have the rain and the climate so I imagine the lands would be fertile .',
157
+ "They don 't know how to do it .",
158
+ ]
159
+ embeddings = model.encode(sentences)
160
+ print(embeddings.shape)
161
+ # [3, 384]
162
+
163
+ # Get the similarity scores for the embeddings
164
+ similarities = model.similarity(embeddings, embeddings)
165
+ print(similarities.shape)
166
+ # [3, 3]
167
+ ```
168
+
169
+ <!--
170
+ ### Direct Usage (Transformers)
171
+
172
+ <details><summary>Click to see the direct usage in Transformers</summary>
173
+
174
+ </details>
175
+ -->
176
+
177
+ <!--
178
+ ### Downstream Usage (Sentence Transformers)
179
+
180
+ You can finetune this model on your own dataset.
181
+
182
+ <details><summary>Click to expand</summary>
183
+
184
+ </details>
185
+ -->
186
+
187
+ <!--
188
+ ### Out-of-Scope Use
189
+
190
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
191
+ -->
192
+
193
+ ## Evaluation
194
+
195
+ ### Metrics
196
+
197
+ #### Semantic Similarity
198
+ * Dataset: `snli-dev`
199
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
200
+
201
+ | Metric | Value |
202
+ |:-------------------|:-----------|
203
+ | pearson_cosine | 0.3725 |
204
+ | spearman_cosine | 0.3729 |
205
+ | pearson_manhattan | 0.365 |
206
+ | spearman_manhattan | 0.3725 |
207
+ | pearson_euclidean | 0.3657 |
208
+ | spearman_euclidean | 0.3729 |
209
+ | pearson_dot | 0.3725 |
210
+ | spearman_dot | 0.3729 |
211
+ | pearson_max | 0.3725 |
212
+ | **spearman_max** | **0.3729** |
213
+
214
+ <!--
215
+ ## Bias, Risks and Limitations
216
+
217
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
218
+ -->
219
+
220
+ <!--
221
+ ### Recommendations
222
+
223
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
224
+ -->
225
+
226
+ ## Training Details
227
+
228
+ ### Training Dataset
229
+
230
+ #### Unnamed Dataset
231
+
232
+
233
+ * Size: 100,000 training samples
234
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
235
+ * Approximate statistics based on the first 1000 samples:
236
+ | | sentence_0 | sentence_1 | label |
237
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
238
+ | type | string | string | float |
239
+ | details | <ul><li>min: 5 tokens</li><li>mean: 35.27 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.46 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
240
+ * Samples:
241
+ | sentence_0 | sentence_1 | label |
242
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-----------------|
243
+ | <code>Natalia M' a regardé .</code> | <code>Natalia a regardé et attend que je lui donne l' épée .</code> | <code>0.5</code> |
244
+ | <code>And he sounded sincere .</code> | <code>He sounded sincere.He was sounding sincere in his words .</code> | <code>0.0</code> |
245
+ | <code>There 's a small zoo area where you can see snakes , lizards , birds of prey , wolves , hyenas , foxes , and various desert cats , including cheetahs and leopards .</code> | <code>The zoo is home to some endangered desert animals .</code> | <code>0.5</code> |
246
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
247
+ ```json
248
+ {
249
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
250
+ }
251
+ ```
252
+
253
+ ### Training Hyperparameters
254
+ #### Non-Default Hyperparameters
255
+
256
+ - `eval_strategy`: steps
257
+ - `per_device_train_batch_size`: 16
258
+ - `per_device_eval_batch_size`: 16
259
+ - `num_train_epochs`: 4
260
+ - `fp16`: True
261
+ - `multi_dataset_batch_sampler`: round_robin
262
+
263
+ #### All Hyperparameters
264
+ <details><summary>Click to expand</summary>
265
+
266
+ - `overwrite_output_dir`: False
267
+ - `do_predict`: False
268
+ - `eval_strategy`: steps
269
+ - `prediction_loss_only`: True
270
+ - `per_device_train_batch_size`: 16
271
+ - `per_device_eval_batch_size`: 16
272
+ - `per_gpu_train_batch_size`: None
273
+ - `per_gpu_eval_batch_size`: None
274
+ - `gradient_accumulation_steps`: 1
275
+ - `eval_accumulation_steps`: None
276
+ - `torch_empty_cache_steps`: None
277
+ - `learning_rate`: 5e-05
278
+ - `weight_decay`: 0.0
279
+ - `adam_beta1`: 0.9
280
+ - `adam_beta2`: 0.999
281
+ - `adam_epsilon`: 1e-08
282
+ - `max_grad_norm`: 1
283
+ - `num_train_epochs`: 4
284
+ - `max_steps`: -1
285
+ - `lr_scheduler_type`: linear
286
+ - `lr_scheduler_kwargs`: {}
287
+ - `warmup_ratio`: 0.0
288
+ - `warmup_steps`: 0
289
+ - `log_level`: passive
290
+ - `log_level_replica`: warning
291
+ - `log_on_each_node`: True
292
+ - `logging_nan_inf_filter`: True
293
+ - `save_safetensors`: True
294
+ - `save_on_each_node`: False
295
+ - `save_only_model`: False
296
+ - `restore_callback_states_from_checkpoint`: False
297
+ - `no_cuda`: False
298
+ - `use_cpu`: False
299
+ - `use_mps_device`: False
300
+ - `seed`: 42
301
+ - `data_seed`: None
302
+ - `jit_mode_eval`: False
303
+ - `use_ipex`: False
304
+ - `bf16`: False
305
+ - `fp16`: True
306
+ - `fp16_opt_level`: O1
307
+ - `half_precision_backend`: auto
308
+ - `bf16_full_eval`: False
309
+ - `fp16_full_eval`: False
310
+ - `tf32`: None
311
+ - `local_rank`: 0
312
+ - `ddp_backend`: None
313
+ - `tpu_num_cores`: None
314
+ - `tpu_metrics_debug`: False
315
+ - `debug`: []
316
+ - `dataloader_drop_last`: False
317
+ - `dataloader_num_workers`: 0
318
+ - `dataloader_prefetch_factor`: None
319
+ - `past_index`: -1
320
+ - `disable_tqdm`: False
321
+ - `remove_unused_columns`: True
322
+ - `label_names`: None
323
+ - `load_best_model_at_end`: False
324
+ - `ignore_data_skip`: False
325
+ - `fsdp`: []
326
+ - `fsdp_min_num_params`: 0
327
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
328
+ - `fsdp_transformer_layer_cls_to_wrap`: None
329
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
330
+ - `deepspeed`: None
331
+ - `label_smoothing_factor`: 0.0
332
+ - `optim`: adamw_torch
333
+ - `optim_args`: None
334
+ - `adafactor`: False
335
+ - `group_by_length`: False
336
+ - `length_column_name`: length
337
+ - `ddp_find_unused_parameters`: None
338
+ - `ddp_bucket_cap_mb`: None
339
+ - `ddp_broadcast_buffers`: False
340
+ - `dataloader_pin_memory`: True
341
+ - `dataloader_persistent_workers`: False
342
+ - `skip_memory_metrics`: True
343
+ - `use_legacy_prediction_loop`: False
344
+ - `push_to_hub`: False
345
+ - `resume_from_checkpoint`: None
346
+ - `hub_model_id`: None
347
+ - `hub_strategy`: every_save
348
+ - `hub_private_repo`: False
349
+ - `hub_always_push`: False
350
+ - `gradient_checkpointing`: False
351
+ - `gradient_checkpointing_kwargs`: None
352
+ - `include_inputs_for_metrics`: False
353
+ - `eval_do_concat_batches`: True
354
+ - `fp16_backend`: auto
355
+ - `push_to_hub_model_id`: None
356
+ - `push_to_hub_organization`: None
357
+ - `mp_parameters`:
358
+ - `auto_find_batch_size`: False
359
+ - `full_determinism`: False
360
+ - `torchdynamo`: None
361
+ - `ray_scope`: last
362
+ - `ddp_timeout`: 1800
363
+ - `torch_compile`: False
364
+ - `torch_compile_backend`: None
365
+ - `torch_compile_mode`: None
366
+ - `dispatch_batches`: None
367
+ - `split_batches`: None
368
+ - `include_tokens_per_second`: False
369
+ - `include_num_input_tokens_seen`: False
370
+ - `neftune_noise_alpha`: None
371
+ - `optim_target_modules`: None
372
+ - `batch_eval_metrics`: False
373
+ - `eval_on_start`: False
374
+ - `eval_use_gather_object`: False
375
+ - `batch_sampler`: batch_sampler
376
+ - `multi_dataset_batch_sampler`: round_robin
377
+
378
+ </details>
379
+
380
+ ### Training Logs
381
+ | Epoch | Step | Training Loss | snli-dev_spearman_max |
382
+ |:------:|:-----:|:-------------:|:---------------------:|
383
+ | 0.08 | 500 | 0.2008 | 0.0433 |
384
+ | 0.16 | 1000 | 0.1757 | 0.1024 |
385
+ | 0.24 | 1500 | 0.1732 | 0.1503 |
386
+ | 0.32 | 2000 | 0.1685 | 0.2168 |
387
+ | 0.4 | 2500 | 0.1702 | 0.2206 |
388
+ | 0.48 | 3000 | 0.1676 | 0.2117 |
389
+ | 0.56 | 3500 | 0.1637 | 0.2624 |
390
+ | 0.64 | 4000 | 0.1636 | 0.2169 |
391
+ | 0.72 | 4500 | 0.1608 | 0.0051 |
392
+ | 0.8 | 5000 | 0.1601 | 0.2236 |
393
+ | 0.88 | 5500 | 0.1597 | 0.2471 |
394
+ | 0.96 | 6000 | 0.1596 | 0.2934 |
395
+ | 1.0 | 6250 | - | 0.2905 |
396
+ | 1.04 | 6500 | 0.1602 | 0.3001 |
397
+ | 1.12 | 7000 | 0.1571 | 0.3116 |
398
+ | 1.2 | 7500 | 0.1588 | 0.3145 |
399
+ | 1.28 | 8000 | 0.1562 | 0.3304 |
400
+ | 1.3600 | 8500 | 0.1548 | 0.3376 |
401
+ | 1.44 | 9000 | 0.156 | 0.3359 |
402
+ | 1.52 | 9500 | 0.1552 | 0.3194 |
403
+ | 1.6 | 10000 | 0.153 | 0.3474 |
404
+ | 1.6800 | 10500 | 0.1529 | 0.3220 |
405
+ | 1.76 | 11000 | 0.1518 | 0.3255 |
406
+ | 1.8400 | 11500 | 0.1499 | 0.3332 |
407
+ | 1.92 | 12000 | 0.1524 | 0.3521 |
408
+ | 2.0 | 12500 | 0.1512 | 0.3425 |
409
+ | 2.08 | 13000 | 0.1514 | 0.3462 |
410
+ | 2.16 | 13500 | 0.1516 | 0.3414 |
411
+ | 2.24 | 14000 | 0.1532 | 0.3453 |
412
+ | 2.32 | 14500 | 0.1459 | 0.3699 |
413
+ | 2.4 | 15000 | 0.1524 | 0.3576 |
414
+ | 2.48 | 15500 | 0.1506 | 0.3418 |
415
+ | 2.56 | 16000 | 0.1488 | 0.3559 |
416
+ | 2.64 | 16500 | 0.1486 | 0.3597 |
417
+ | 2.7200 | 17000 | 0.1469 | 0.3552 |
418
+ | 2.8 | 17500 | 0.1448 | 0.3459 |
419
+ | 2.88 | 18000 | 0.1458 | 0.3503 |
420
+ | 2.96 | 18500 | 0.1468 | 0.3647 |
421
+ | 3.0 | 18750 | - | 0.3611 |
422
+ | 3.04 | 19000 | 0.1472 | 0.3741 |
423
+ | 3.12 | 19500 | 0.1457 | 0.3603 |
424
+ | 3.2 | 20000 | 0.147 | 0.3576 |
425
+ | 3.2800 | 20500 | 0.1451 | 0.3663 |
426
+ | 3.36 | 21000 | 0.1438 | 0.3734 |
427
+ | 3.44 | 21500 | 0.1471 | 0.3698 |
428
+ | 3.52 | 22000 | 0.1462 | 0.3646 |
429
+ | 3.6 | 22500 | 0.1436 | 0.3740 |
430
+ | 3.68 | 23000 | 0.1441 | 0.3696 |
431
+ | 3.76 | 23500 | 0.1423 | 0.3636 |
432
+ | 3.84 | 24000 | 0.1411 | 0.3713 |
433
+ | 3.92 | 24500 | 0.1438 | 0.3706 |
434
+ | 4.0 | 25000 | 0.1421 | 0.3729 |
435
+
436
+
437
+ ### Framework Versions
438
+ - Python: 3.10.12
439
+ - Sentence Transformers: 3.1.1
440
+ - Transformers: 4.44.2
441
+ - PyTorch: 2.4.1+cu121
442
+ - Accelerate: 0.34.2
443
+ - Datasets: 3.0.1
444
+ - Tokenizers: 0.19.1
445
+
446
+ ## Citation
447
+
448
+ ### BibTeX
449
+
450
+ #### Sentence Transformers
451
+ ```bibtex
452
+ @inproceedings{reimers-2019-sentence-bert,
453
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
454
+ author = "Reimers, Nils and Gurevych, Iryna",
455
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
456
+ month = "11",
457
+ year = "2019",
458
+ publisher = "Association for Computational Linguistics",
459
+ url = "https://arxiv.org/abs/1908.10084",
460
+ }
461
+ ```
462
+
463
+ <!--
464
+ ## Glossary
465
+
466
+ *Clearly define terms in order to be accessible across audiences.*
467
+ -->
468
+
469
+ <!--
470
+ ## Model Card Authors
471
+
472
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
473
+ -->
474
+
475
+ <!--
476
+ ## Model Card Contact
477
+
478
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
479
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98f290b236c26d88c4c8be141829f25f1e870328667e17794e7d93bb18b23232
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff