--- base_model: openai/whisper-small datasets: - audiofolder language: - ar library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: quran-whisper-tiny-v1 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - type: wer value: 3.5864978902953584 name: Wer --- # quran-whisper-tiny-v1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0329 - Wer: 3.5865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0154 | 16.9492 | 1000 | 0.0404 | 3.5865 | | 0.0021 | 33.8983 | 2000 | 0.0329 | 3.5865 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1