Commit
·
76be0e0
1
Parent(s):
fe7b6cd
update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
datasets:
|
| 6 |
+
- pv_dataset
|
| 7 |
+
metrics:
|
| 8 |
+
- precision
|
| 9 |
+
- recall
|
| 10 |
+
- f1
|
| 11 |
+
- accuracy
|
| 12 |
+
model-index:
|
| 13 |
+
- name: test_ner3
|
| 14 |
+
results:
|
| 15 |
+
- task:
|
| 16 |
+
name: Token Classification
|
| 17 |
+
type: token-classification
|
| 18 |
+
dataset:
|
| 19 |
+
name: pv_dataset
|
| 20 |
+
type: pv_dataset
|
| 21 |
+
config: PVDatasetCorpus
|
| 22 |
+
split: train
|
| 23 |
+
args: PVDatasetCorpus
|
| 24 |
+
metrics:
|
| 25 |
+
- name: Precision
|
| 26 |
+
type: precision
|
| 27 |
+
value: 0.6698151950718686
|
| 28 |
+
- name: Recall
|
| 29 |
+
type: recall
|
| 30 |
+
value: 0.6499117663801446
|
| 31 |
+
- name: F1
|
| 32 |
+
type: f1
|
| 33 |
+
value: 0.6597133941985438
|
| 34 |
+
- name: Accuracy
|
| 35 |
+
type: accuracy
|
| 36 |
+
value: 0.9606609586670052
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 40 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 41 |
+
|
| 42 |
+
# test_ner3
|
| 43 |
+
|
| 44 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the pv_dataset dataset.
|
| 45 |
+
It achieves the following results on the evaluation set:
|
| 46 |
+
- Loss: 0.2983
|
| 47 |
+
- Precision: 0.6698
|
| 48 |
+
- Recall: 0.6499
|
| 49 |
+
- F1: 0.6597
|
| 50 |
+
- Accuracy: 0.9607
|
| 51 |
+
|
| 52 |
+
## Model description
|
| 53 |
+
|
| 54 |
+
More information needed
|
| 55 |
+
|
| 56 |
+
## Intended uses & limitations
|
| 57 |
+
|
| 58 |
+
More information needed
|
| 59 |
+
|
| 60 |
+
## Training and evaluation data
|
| 61 |
+
|
| 62 |
+
More information needed
|
| 63 |
+
|
| 64 |
+
## Training procedure
|
| 65 |
+
|
| 66 |
+
### Training hyperparameters
|
| 67 |
+
|
| 68 |
+
The following hyperparameters were used during training:
|
| 69 |
+
- learning_rate: 2e-05
|
| 70 |
+
- train_batch_size: 16
|
| 71 |
+
- eval_batch_size: 16
|
| 72 |
+
- seed: 42
|
| 73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 74 |
+
- lr_scheduler_type: linear
|
| 75 |
+
- num_epochs: 20
|
| 76 |
+
|
| 77 |
+
### Training results
|
| 78 |
+
|
| 79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 81 |
+
| 0.1106 | 1.0 | 1813 | 0.1128 | 0.6050 | 0.5949 | 0.5999 | 0.9565 |
|
| 82 |
+
| 0.0705 | 2.0 | 3626 | 0.1190 | 0.6279 | 0.6122 | 0.6200 | 0.9585 |
|
| 83 |
+
| 0.0433 | 3.0 | 5439 | 0.1458 | 0.6342 | 0.5983 | 0.6157 | 0.9574 |
|
| 84 |
+
| 0.0301 | 4.0 | 7252 | 0.1453 | 0.6305 | 0.6818 | 0.6552 | 0.9594 |
|
| 85 |
+
| 0.0196 | 5.0 | 9065 | 0.1672 | 0.6358 | 0.6871 | 0.6605 | 0.9594 |
|
| 86 |
+
| 0.0133 | 6.0 | 10878 | 0.1931 | 0.6427 | 0.6138 | 0.6279 | 0.9587 |
|
| 87 |
+
| 0.0104 | 7.0 | 12691 | 0.1948 | 0.6657 | 0.6511 | 0.6583 | 0.9607 |
|
| 88 |
+
| 0.0081 | 8.0 | 14504 | 0.2243 | 0.6341 | 0.6574 | 0.6455 | 0.9586 |
|
| 89 |
+
| 0.0054 | 9.0 | 16317 | 0.2432 | 0.6547 | 0.6318 | 0.6431 | 0.9588 |
|
| 90 |
+
| 0.0041 | 10.0 | 18130 | 0.2422 | 0.6717 | 0.6397 | 0.6553 | 0.9605 |
|
| 91 |
+
| 0.0041 | 11.0 | 19943 | 0.2415 | 0.6571 | 0.6420 | 0.6495 | 0.9601 |
|
| 92 |
+
| 0.0027 | 12.0 | 21756 | 0.2567 | 0.6560 | 0.6590 | 0.6575 | 0.9601 |
|
| 93 |
+
| 0.0023 | 13.0 | 23569 | 0.2609 | 0.6640 | 0.6495 | 0.6566 | 0.9606 |
|
| 94 |
+
| 0.002 | 14.0 | 25382 | 0.2710 | 0.6542 | 0.6670 | 0.6606 | 0.9598 |
|
| 95 |
+
| 0.0012 | 15.0 | 27195 | 0.2766 | 0.6692 | 0.6539 | 0.6615 | 0.9610 |
|
| 96 |
+
| 0.001 | 16.0 | 29008 | 0.2938 | 0.6692 | 0.6415 | 0.6551 | 0.9603 |
|
| 97 |
+
| 0.0007 | 17.0 | 30821 | 0.2969 | 0.6654 | 0.6490 | 0.6571 | 0.9604 |
|
| 98 |
+
| 0.0007 | 18.0 | 32634 | 0.3035 | 0.6628 | 0.6456 | 0.6541 | 0.9601 |
|
| 99 |
+
| 0.0007 | 19.0 | 34447 | 0.2947 | 0.6730 | 0.6489 | 0.6607 | 0.9609 |
|
| 100 |
+
| 0.0004 | 20.0 | 36260 | 0.2983 | 0.6698 | 0.6499 | 0.6597 | 0.9607 |
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
### Framework versions
|
| 104 |
+
|
| 105 |
+
- Transformers 4.21.0
|
| 106 |
+
- Pytorch 1.12.0+cu113
|
| 107 |
+
- Datasets 2.4.0
|
| 108 |
+
- Tokenizers 0.12.1
|