--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-distilbert-base-25000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.926 - name: F1 type: f1 value: 0.9273655280722418 --- # finetuning-sentiment-model-distilbert-base-25000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3791 - Accuracy: 0.926 - F1: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2724 | 1.0 | 1407 | 0.2207 | 0.9192 | 0.9209 | | 0.1629 | 2.0 | 2814 | 0.2558 | 0.9192 | 0.9195 | | 0.0947 | 3.0 | 4221 | 0.3342 | 0.9248 | 0.9267 | | 0.0542 | 4.0 | 5628 | 0.3523 | 0.926 | 0.9278 | | 0.0325 | 5.0 | 7035 | 0.3791 | 0.926 | 0.9274 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1