choidf commited on
Commit
1ff8e30
·
1 Parent(s): 46fd27e

End of training

Browse files
Files changed (1) hide show
  1. README.md +84 -0
README.md ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: roberta-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imdb
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: finetuning-sentiment-model-roberta-base-25000-samples
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: imdb
19
+ type: imdb
20
+ config: plain_text
21
+ split: train
22
+ args: plain_text
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.9476
27
+ - name: F1
28
+ type: f1
29
+ value: 0.9488481062085123
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # finetuning-sentiment-model-roberta-base-25000-samples
36
+
37
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 0.3321
40
+ - Accuracy: 0.9476
41
+ - F1: 0.9488
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 2e-05
61
+ - train_batch_size: 16
62
+ - eval_batch_size: 16
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 5
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
+ | 0.2475 | 1.0 | 1407 | 0.2287 | 0.936 | 0.9383 |
73
+ | 0.1528 | 2.0 | 2814 | 0.2354 | 0.9328 | 0.9319 |
74
+ | 0.0888 | 3.0 | 4221 | 0.2754 | 0.9432 | 0.9452 |
75
+ | 0.0476 | 4.0 | 5628 | 0.2962 | 0.9464 | 0.9475 |
76
+ | 0.0275 | 5.0 | 7035 | 0.3321 | 0.9476 | 0.9488 |
77
+
78
+
79
+ ### Framework versions
80
+
81
+ - Transformers 4.34.1
82
+ - Pytorch 2.1.0+cu118
83
+ - Datasets 2.14.6
84
+ - Tokenizers 0.14.1