--- license: mit base_model: roberta-base tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-roberta-base-25000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9476 - name: F1 type: f1 value: 0.9488481062085123 --- # finetuning-sentiment-model-roberta-base-25000-samples This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3321 - Accuracy: 0.9476 - F1: 0.9488 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2475 | 1.0 | 1407 | 0.2287 | 0.936 | 0.9383 | | 0.1528 | 2.0 | 2814 | 0.2354 | 0.9328 | 0.9319 | | 0.0888 | 3.0 | 4221 | 0.2754 | 0.9432 | 0.9452 | | 0.0476 | 4.0 | 5628 | 0.2962 | 0.9464 | 0.9475 | | 0.0275 | 5.0 | 7035 | 0.3321 | 0.9476 | 0.9488 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1