v0.1
Browse files- README.md +1 -1
- config.json +1 -1
- lunar-noob.zip +2 -2
- lunar-noob/data +21 -9
- lunar-noob/policy.optimizer.pth +2 -2
- lunar-noob/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 259.53 +/- 21.52
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc00f15c550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc00f15c5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc00f15c670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc00f15c700>", "_build": "<function ActorCriticPolicy._build at 0x7fc00f15c790>", "forward": "<function ActorCriticPolicy.forward at 0x7fc00f15c820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc00f15c8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc00f15c940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc00f15c9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc00f15ca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc00f15caf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc00f4d4640>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": null, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.9.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc00f15c550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc00f15c5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc00f15c670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc00f15c700>", "_build": "<function ActorCriticPolicy._build at 0x7fc00f15c790>", "forward": "<function ActorCriticPolicy.forward at 0x7fc00f15c820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc00f15c8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc00f15c940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc00f15c9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc00f15ca60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc00f15caf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc00f4d4640>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673376901272436431, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbfkjxAibE/PEGyPknqh77BGJa7njHhPAAAAAAAAAAABhArPhz0cT14OLe9sjM5vqdstTw+Djc8AAAAAAAAAABNG0I+g6B8PYzYML6vbse9FmS+Oql9mTkAAAAAAAAAAIaAM77saWc+Lj6IPVFJZL7f+1u9GbawPQAAAAAAAAAAJto8Pq7upryaZxY4NT9LtThBEr4dfkC3AACAPwAAgD8Gvza+Q34KvAaxjju8VT05Xu1mPUUnqboAAIA/AACAP5pjCbxsr6K71ogLPc0e5bwUdsy8rjv8vQAAgD8AAIA/86aLvYlRnz9gr6C+sF8ev3CHy72+t/K9AAAAAAAAAADNlLM8rcCePxarAT67vyi/X+unPKabHz0AAAAAAAAAAIMDkr4Fchk/TICIu3t83r41sRK+6ocOPgAAAAAAAAAAYOgFPib+nT/W9P0+lH0Zvxud4D2rzbw9AAAAAAAAAADNuFw+s5xdP7yJyz2sUAG/JN8EPjYBTL0AAAAAAAAAANNeGL7cg1a8BSp/u9GRE7osd7g9/rz9OgAAgD8AAIA/QI8HPszznT9q5gk/OecXv/TlDD4HVz0+AAAAAAAAAACmrGQ+HcB2P39jpj70EAG/g+9GPpeworsAAAAAAAAAALODFb5wOaE/2lYFv5r7Er936k++4OY5vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8rOR66a7b0CUhpRSlIwBbJRL/IwBdJRHQOMNx3Ah0Qt1fZQoaAZoCWgPQwgP1CmPrg9wQJSGlFKUaBVLymgWR0DjDcfu1ndwdX2UKGgGaAloD0MI21Axzl+QbkCUhpRSlGgVS/RoFkdA4w3NLYf4h3V9lChoBmgJaA9DCBGLGHYYT2NAlIaUUpRoFU3oA2gWR0DjDdlQBPsSdX2UKGgGaAloD0MIvHg/bn+ocECUhpRSlGgVTR0BaBZHQOMN3g1He8B1fZQoaAZoCWgPQwg5e2e0Ve5vQJSGlFKUaBVL72gWR0DjDd/9DQZ5dX2UKGgGaAloD0MIXB/WG7W4ZkCUhpRSlGgVTegDaBZHQOMR9zxqfvp1fZQoaAZoCWgPQwjeA3RfTiVxQJSGlFKUaBVLyGgWR0DjEfd+uvECdX2UKGgGaAloD0MIoGzKFV5nbUCUhpRSlGgVS+RoFkdA4xH7rl3hXXV9lChoBmgJaA9DCPcBSG1iRGxAlIaUUpRoFUvaaBZHQOMSBTK/2011fZQoaAZoCWgPQwgM5xpmaMRrQJSGlFKUaBVN6QJoFkdA4xIGjyOJcnV9lChoBmgJaA9DCIoCfSJP429AlIaUUpRoFUvjaBZHQOMSB2n889x1fZQoaAZoCWgPQwgMdy6M9INhQJSGlFKUaBVN6ANoFkdA4xIJYUWVNnV9lChoBmgJaA9DCF5nQ/7ZHnFAlIaUUpRoFUvkaBZHQOMSCtNDc/N1fZQoaAZoCWgPQwj2QCsw5C9xQJSGlFKUaBVL2GgWR0DjEgxVyWAxdX2UKGgGaAloD0MIuAN1yiNycECUhpRSlGgVTaMBaBZHQOMSFQ6hg3N1fZQoaAZoCWgPQwjPEI5Z9thsQJSGlFKUaBVNKwFoFkdA4xIYrE9+w3V9lChoBmgJaA9DCPc8f9qopG5AlIaUUpRoFUvZaBZHQOMSGnvfCQ91fZQoaAZoCWgPQwjOFhBaD41bQJSGlFKUaBVN6ANoFkdA4xIgzZxrBXV9lChoBmgJaA9DCMcQABz7zXFAlIaUUpRoFUv/aBZHQOMSIQfdRBN1fZQoaAZoCWgPQwhr1EM0urpyQJSGlFKUaBVL5mgWR0DjEi7Q2uPndX2UKGgGaAloD0MIERjrG5gAY0CUhpRSlGgVTegDaBZHQOMSM0p1A7h1fZQoaAZoCWgPQwgOL4hIDYVwQJSGlFKUaBVL3mgWR0DjEjcvN/vwdX2UKGgGaAloD0MIegCL/PoOcUCUhpRSlGgVS95oFkdA4xI5SWJJoXV9lChoBmgJaA9DCJZa7zdapm1AlIaUUpRoFUvdaBZHQOMSOmcjJMh1fZQoaAZoCWgPQwjScMrc/F9uQJSGlFKUaBVL7WgWR0DjEjvVbRnfdX2UKGgGaAloD0MIJqYLsfpxckCUhpRSlGgVS+BoFkdA4xI8gDifhHV9lChoBmgJaA9DCEWhZd2/w3BAlIaUUpRoFUvqaBZHQOMSQDM7lq91fZQoaAZoCWgPQwjkFYielGVvQJSGlFKUaBVL8mgWR0DjEk3+hoM8dX2UKGgGaAloD0MIcxJKXwg0cUCUhpRSlGgVTQYBaBZHQOMSV55HEuR1fZQoaAZoCWgPQwiNYOP6d/5vQJSGlFKUaBVL2mgWR0DjEmaXk5p8dX2UKGgGaAloD0MIGO5cGOlhcECUhpRSlGgVS+loFkdA4xJwYao/A3V9lChoBmgJaA9DCLwjY7X5v3BAlIaUUpRoFUvbaBZHQOMSdqEi+td1fZQoaAZoCWgPQwg8wf7rXCRvQJSGlFKUaBVL82gWR0DjEnejNY8udX2UKGgGaAloD0MIDvYmhmTBckCUhpRSlGgVS9BoFkdA4xJ5tGmUGHV9lChoBmgJaA9DCIejq3T3L3BAlIaUUpRoFUv0aBZHQOMSfBlar3l1fZQoaAZoCWgPQwjQCaGD7i1wQJSGlFKUaBVNFwFoFkdA4xKHamwaBXV9lChoBmgJaA9DCAcHexMDvXBAlIaUUpRoFU2WAWgWR0DjEoq0Xxe+dX2UKGgGaAloD0MICTNt/wohcECUhpRSlGgVS+ZoFkdA4xKMvboKUnV9lChoBmgJaA9DCHPbvkf9BnJAlIaUUpRoFUv3aBZHQOMSm7K3d9F1fZQoaAZoCWgPQwgTfxR1ph9xQJSGlFKUaBVL4GgWR0DjEqRpsXSCdX2UKGgGaAloD0MIzY+/tOhncECUhpRSlGgVS+5oFkdA4xK5TzundnV9lChoBmgJaA9DCIFDqFLzqHJAlIaUUpRoFU0dAWgWR0DjEr8qUeMidX2UKGgGaAloD0MISwSqfxA+ckCUhpRSlGgVS/VoFkdA4xK/LsjVx3V9lChoBmgJaA9DCNl6hnDMZG9AlIaUUpRoFUvgaBZHQOMSycKZ2IR1fZQoaAZoCWgPQwjMRBFS9wpyQJSGlFKUaBVL2mgWR0DjEsppBX0YdX2UKGgGaAloD0MIRKfn3VgycECUhpRSlGgVS/doFkdA4xLNLXDm83V9lChoBmgJaA9DCFKeeTlsv3FAlIaUUpRoFUvvaBZHQOMS4Vi2Dxt1fZQoaAZoCWgPQwiKcmn8QphkQJSGlFKUaBVN6ANoFkdA4xLneF10T3V9lChoBmgJaA9DCPGcLSC0KG5AlIaUUpRoFUvjaBZHQOMS596NVBF1fZQoaAZoCWgPQwhhU+dRMYJwQJSGlFKUaBVLzGgWR0DjEvY8dxQ0dX2UKGgGaAloD0MIg4WTNH8tYUCUhpRSlGgVTegDaBZHQOMTAAqTbFl1fZQoaAZoCWgPQwi1FfvL7rFkQJSGlFKUaBVN6ANoFkdA4xMAVgH/tXV9lChoBmgJaA9DCCiZnNqZ3HBAlIaUUpRoFUvfaBZHQOMTApxaPjp1fZQoaAZoCWgPQwiC4seYe+1xQJSGlFKUaBVL42gWR0DjEw7zOopAdX2UKGgGaAloD0MIEynN5vEtcECUhpRSlGgVS/BoFkdA4xMSGpEQXnV9lChoBmgJaA9DCCB7vfvj+3BAlIaUUpRoFUvJaBZHQOMTI4IjW091fZQoaAZoCWgPQwjC3sSQHKpjQJSGlFKUaBVN6ANoFkdA4xMv4L9deXV9lChoBmgJaA9DCIFZoUi333JAlIaUUpRoFUvyaBZHQOMTL+Zof0V1fZQoaAZoCWgPQwgiGt1BbOxjQJSGlFKUaBVN6ANoFkdA4xM4lB6a9nV9lChoBmgJaA9DCOxq8pTVs3BAlIaUUpRoFUvmaBZHQOMTOpxcVxl1fZQoaAZoCWgPQwiKraBpCcFwQJSGlFKUaBVL02gWR0DjE0A9GI9DdX2UKGgGaAloD0MI7//jhAkpckCUhpRSlGgVS/xoFkdA4xNJW+fyw3V9lChoBmgJaA9DCPOtD+uNNHJAlIaUUpRoFUvtaBZHQOMTUuvhZQp1fZQoaAZoCWgPQwgllSnmoEZkQJSGlFKUaBVN6ANoFkdA4xNUTmnwX3V9lChoBmgJaA9DCOZ4BaKnFHBAlIaUUpRoFU0OAWgWR0DjE164sEq2dX2UKGgGaAloD0MINlfNcwRGcECUhpRSlGgVS9xoFkdA4xNhU1IiDHV9lChoBmgJaA9DCFVQUfUrVnJAlIaUUpRoFUvjaBZHQOMTbz3bmEJ1fZQoaAZoCWgPQwjUDRR459pyQJSGlFKUaBVLzGgWR0DjE3GEoOQRdX2UKGgGaAloD0MIUAEwngEZcECUhpRSlGgVTQkBaBZHQOMTemMS9M91fZQoaAZoCWgPQwig4GJFDbZvQJSGlFKUaBVL9GgWR0DjE4WjbBXTdX2UKGgGaAloD0MIz6Pi/444NECUhpRSlGgVS2RoFkdA4xOPH1Fpf3V9lChoBmgJaA9DCLIQHQJHGnBAlIaUUpRoFUvdaBZHQOMTkoFC9h91fZQoaAZoCWgPQwhqwvaTsWxiQJSGlFKUaBVN6ANoFkdA4xOW5IYm9nV9lChoBmgJaA9DCJRQ+kJI9WBAlIaUUpRoFU3oA2gWR0DjE5mm8/UwdX2UKGgGaAloD0MIWWlSCrqEb0CUhpRSlGgVS+NoFkdA4xOgzJhfB3V9lChoBmgJaA9DCDxqTIj5h3FAlIaUUpRoFUvuaBZHQOMTs6+SKWN1fZQoaAZoCWgPQwhHHR1XI3ZsQJSGlFKUaBVL7WgWR0DjE72TxG2DdX2UKGgGaAloD0MIn8coz/yickCUhpRSlGgVTdIBaBZHQOMTvhU96kZ1fZQoaAZoCWgPQwi7l/vkaE5yQJSGlFKUaBVNbgFoFkdA4xPJzsY2sXV9lChoBmgJaA9DCINuL2nMoHBAlIaUUpRoFUvpaBZHQOMT0M43m3h1fZQoaAZoCWgPQwiGHFvPEL9vQJSGlFKUaBVL3mgWR0DjE9EPikwfdX2UKGgGaAloD0MIvFmD99VvbkCUhpRSlGgVS99oFkdA4xPXe/gzg3V9lChoBmgJaA9DCJxrmKGxuHBAlIaUUpRoFU0lAWgWR0DjE9fzU7SzdX2UKGgGaAloD0MIh9wMN2CvbECUhpRSlGgVTQcBaBZHQOMT3ze2uxN1fZQoaAZoCWgPQwjQX+gRo+tgQJSGlFKUaBVN6ANoFkdA4xPfOYIBzXV9lChoBmgJaA9DCHhEhepm83BAlIaUUpRoFUvnaBZHQOMT4CmsNlR1fZQoaAZoCWgPQwiqfxDJEDViQJSGlFKUaBVN6ANoFkdA4xPruQp4KXV9lChoBmgJaA9DCIWVCioqWnFAlIaUUpRoFUvWaBZHQOMT7Z/5Lyt1fZQoaAZoCWgPQwhgOUIGMjJwQJSGlFKUaBVLy2gWR0DjE/RrMTvidX2UKGgGaAloD0MIaY1BJwQjYkCUhpRSlGgVTegDaBZHQOMT/dG0/np1fZQoaAZoCWgPQwghsHJoEX5uQJSGlFKUaBVL1WgWR0DjFAnUMoc8dX2UKGgGaAloD0MI7ginBe/8cECUhpRSlGgVS9toFkdA4xQLB4t6HHV9lChoBmgJaA9DCASNmUQ9im5AlIaUUpRoFUvhaBZHQOMUE5YzSCx1fZQoaAZoCWgPQwjLZaNz/hJvQJSGlFKUaBVNTAFoFkdA4xQYhpHqeXV9lChoBmgJaA9DCPAXsyXrVHJAlIaUUpRoFUvSaBZHQOMUGPdGiHt1fZQoaAZoCWgPQwiSIFwBhXZdQJSGlFKUaBVN6ANoFkdA4xQZkzXSSnV9lChoBmgJaA9DCGOcvwkFgHJAlIaUUpRoFUv2aBZHQOMUGfbAUL51fZQoaAZoCWgPQwg+rg0VI4NwQJSGlFKUaBVL32gWR0DjFBuzposadX2UKGgGaAloD0MIfUCgM6micUCUhpRSlGgVS+loFkdA4xQeDPnjhnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 350, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.102.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 #1 SMP Wed Mar 2 00:30:59 UTC 2022", "Python": "3.9.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
lunar-noob.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c57be1b3a5a0687639786304f2a3d330b01f8ac0274acfc84ed6c6f91609696
|
3 |
+
size 147318
|
lunar-noob/data
CHANGED
@@ -42,28 +42,40 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
-
"_last_obs":
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
"_last_original_obs": null,
|
60 |
"_episode_num": 0,
|
61 |
"use_sde": false,
|
62 |
"sde_sample_freq": -1,
|
63 |
-
"_current_progress_remaining":
|
64 |
-
"ep_info_buffer":
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"n_steps": 2048,
|
68 |
"gamma": 0.99,
|
69 |
"gae_lambda": 0.95,
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1673376901272436431,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL2NocW1hL21pbmljb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9jaHFtYS9taW5pY29uZGEzL2VudnMvZGVlcC1ybC1jbGFzcy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbfkjxAibE/PEGyPknqh77BGJa7njHhPAAAAAAAAAAABhArPhz0cT14OLe9sjM5vqdstTw+Djc8AAAAAAAAAABNG0I+g6B8PYzYML6vbse9FmS+Oql9mTkAAAAAAAAAAIaAM77saWc+Lj6IPVFJZL7f+1u9GbawPQAAAAAAAAAAJto8Pq7upryaZxY4NT9LtThBEr4dfkC3AACAPwAAgD8Gvza+Q34KvAaxjju8VT05Xu1mPUUnqboAAIA/AACAP5pjCbxsr6K71ogLPc0e5bwUdsy8rjv8vQAAgD8AAIA/86aLvYlRnz9gr6C+sF8ev3CHy72+t/K9AAAAAAAAAADNlLM8rcCePxarAT67vyi/X+unPKabHz0AAAAAAAAAAIMDkr4Fchk/TICIu3t83r41sRK+6ocOPgAAAAAAAAAAYOgFPib+nT/W9P0+lH0Zvxud4D2rzbw9AAAAAAAAAADNuFw+s5xdP7yJyz2sUAG/JN8EPjYBTL0AAAAAAAAAANNeGL7cg1a8BSp/u9GRE7osd7g9/rz9OgAAgD8AAIA/QI8HPszznT9q5gk/OecXv/TlDD4HVz0+AAAAAAAAAACmrGQ+HcB2P39jpj70EAG/g+9GPpeworsAAAAAAAAAALODFb5wOaE/2lYFv5r7Er936k++4OY5vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVPRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8rOR66a7b0CUhpRSlIwBbJRL/IwBdJRHQOMNx3Ah0Qt1fZQoaAZoCWgPQwgP1CmPrg9wQJSGlFKUaBVLymgWR0DjDcfu1ndwdX2UKGgGaAloD0MI21Axzl+QbkCUhpRSlGgVS/RoFkdA4w3NLYf4h3V9lChoBmgJaA9DCBGLGHYYT2NAlIaUUpRoFU3oA2gWR0DjDdlQBPsSdX2UKGgGaAloD0MIvHg/bn+ocECUhpRSlGgVTR0BaBZHQOMN3g1He8B1fZQoaAZoCWgPQwg5e2e0Ve5vQJSGlFKUaBVL72gWR0DjDd/9DQZ5dX2UKGgGaAloD0MIXB/WG7W4ZkCUhpRSlGgVTegDaBZHQOMR9zxqfvp1fZQoaAZoCWgPQwjeA3RfTiVxQJSGlFKUaBVLyGgWR0DjEfd+uvECdX2UKGgGaAloD0MIoGzKFV5nbUCUhpRSlGgVS+RoFkdA4xH7rl3hXXV9lChoBmgJaA9DCPcBSG1iRGxAlIaUUpRoFUvaaBZHQOMSBTK/2011fZQoaAZoCWgPQwgM5xpmaMRrQJSGlFKUaBVN6QJoFkdA4xIGjyOJcnV9lChoBmgJaA9DCIoCfSJP429AlIaUUpRoFUvjaBZHQOMSB2n889x1fZQoaAZoCWgPQwgMdy6M9INhQJSGlFKUaBVN6ANoFkdA4xIJYUWVNnV9lChoBmgJaA9DCF5nQ/7ZHnFAlIaUUpRoFUvkaBZHQOMSCtNDc/N1fZQoaAZoCWgPQwj2QCsw5C9xQJSGlFKUaBVL2GgWR0DjEgxVyWAxdX2UKGgGaAloD0MIuAN1yiNycECUhpRSlGgVTaMBaBZHQOMSFQ6hg3N1fZQoaAZoCWgPQwjPEI5Z9thsQJSGlFKUaBVNKwFoFkdA4xIYrE9+w3V9lChoBmgJaA9DCPc8f9qopG5AlIaUUpRoFUvZaBZHQOMSGnvfCQ91fZQoaAZoCWgPQwjOFhBaD41bQJSGlFKUaBVN6ANoFkdA4xIgzZxrBXV9lChoBmgJaA9DCMcQABz7zXFAlIaUUpRoFUv/aBZHQOMSIQfdRBN1fZQoaAZoCWgPQwhr1EM0urpyQJSGlFKUaBVL5mgWR0DjEi7Q2uPndX2UKGgGaAloD0MIERjrG5gAY0CUhpRSlGgVTegDaBZHQOMSM0p1A7h1fZQoaAZoCWgPQwgOL4hIDYVwQJSGlFKUaBVL3mgWR0DjEjcvN/vwdX2UKGgGaAloD0MIegCL/PoOcUCUhpRSlGgVS95oFkdA4xI5SWJJoXV9lChoBmgJaA9DCJZa7zdapm1AlIaUUpRoFUvdaBZHQOMSOmcjJMh1fZQoaAZoCWgPQwjScMrc/F9uQJSGlFKUaBVL7WgWR0DjEjvVbRnfdX2UKGgGaAloD0MIJqYLsfpxckCUhpRSlGgVS+BoFkdA4xI8gDifhHV9lChoBmgJaA9DCEWhZd2/w3BAlIaUUpRoFUvqaBZHQOMSQDM7lq91fZQoaAZoCWgPQwjkFYielGVvQJSGlFKUaBVL8mgWR0DjEk3+hoM8dX2UKGgGaAloD0MIcxJKXwg0cUCUhpRSlGgVTQYBaBZHQOMSV55HEuR1fZQoaAZoCWgPQwiNYOP6d/5vQJSGlFKUaBVL2mgWR0DjEmaXk5p8dX2UKGgGaAloD0MIGO5cGOlhcECUhpRSlGgVS+loFkdA4xJwYao/A3V9lChoBmgJaA9DCLwjY7X5v3BAlIaUUpRoFUvbaBZHQOMSdqEi+td1fZQoaAZoCWgPQwg8wf7rXCRvQJSGlFKUaBVL82gWR0DjEnejNY8udX2UKGgGaAloD0MIDvYmhmTBckCUhpRSlGgVS9BoFkdA4xJ5tGmUGHV9lChoBmgJaA9DCIejq3T3L3BAlIaUUpRoFUv0aBZHQOMSfBlar3l1fZQoaAZoCWgPQwjQCaGD7i1wQJSGlFKUaBVNFwFoFkdA4xKHamwaBXV9lChoBmgJaA9DCAcHexMDvXBAlIaUUpRoFU2WAWgWR0DjEoq0Xxe+dX2UKGgGaAloD0MICTNt/wohcECUhpRSlGgVS+ZoFkdA4xKMvboKUnV9lChoBmgJaA9DCHPbvkf9BnJAlIaUUpRoFUv3aBZHQOMSm7K3d9F1fZQoaAZoCWgPQwgTfxR1ph9xQJSGlFKUaBVL4GgWR0DjEqRpsXSCdX2UKGgGaAloD0MIzY+/tOhncECUhpRSlGgVS+5oFkdA4xK5TzundnV9lChoBmgJaA9DCIFDqFLzqHJAlIaUUpRoFU0dAWgWR0DjEr8qUeMidX2UKGgGaAloD0MISwSqfxA+ckCUhpRSlGgVS/VoFkdA4xK/LsjVx3V9lChoBmgJaA9DCNl6hnDMZG9AlIaUUpRoFUvgaBZHQOMSycKZ2IR1fZQoaAZoCWgPQwjMRBFS9wpyQJSGlFKUaBVL2mgWR0DjEsppBX0YdX2UKGgGaAloD0MIRKfn3VgycECUhpRSlGgVS/doFkdA4xLNLXDm83V9lChoBmgJaA9DCFKeeTlsv3FAlIaUUpRoFUvvaBZHQOMS4Vi2Dxt1fZQoaAZoCWgPQwiKcmn8QphkQJSGlFKUaBVN6ANoFkdA4xLneF10T3V9lChoBmgJaA9DCPGcLSC0KG5AlIaUUpRoFUvjaBZHQOMS596NVBF1fZQoaAZoCWgPQwhhU+dRMYJwQJSGlFKUaBVLzGgWR0DjEvY8dxQ0dX2UKGgGaAloD0MIg4WTNH8tYUCUhpRSlGgVTegDaBZHQOMTAAqTbFl1fZQoaAZoCWgPQwi1FfvL7rFkQJSGlFKUaBVN6ANoFkdA4xMAVgH/tXV9lChoBmgJaA9DCCiZnNqZ3HBAlIaUUpRoFUvfaBZHQOMTApxaPjp1fZQoaAZoCWgPQwiC4seYe+1xQJSGlFKUaBVL42gWR0DjEw7zOopAdX2UKGgGaAloD0MIEynN5vEtcECUhpRSlGgVS/BoFkdA4xMSGpEQXnV9lChoBmgJaA9DCCB7vfvj+3BAlIaUUpRoFUvJaBZHQOMTI4IjW091fZQoaAZoCWgPQwjC3sSQHKpjQJSGlFKUaBVN6ANoFkdA4xMv4L9deXV9lChoBmgJaA9DCIFZoUi333JAlIaUUpRoFUvyaBZHQOMTL+Zof0V1fZQoaAZoCWgPQwgiGt1BbOxjQJSGlFKUaBVN6ANoFkdA4xM4lB6a9nV9lChoBmgJaA9DCOxq8pTVs3BAlIaUUpRoFUvmaBZHQOMTOpxcVxl1fZQoaAZoCWgPQwiKraBpCcFwQJSGlFKUaBVL02gWR0DjE0A9GI9DdX2UKGgGaAloD0MI7//jhAkpckCUhpRSlGgVS/xoFkdA4xNJW+fyw3V9lChoBmgJaA9DCPOtD+uNNHJAlIaUUpRoFUvtaBZHQOMTUuvhZQp1fZQoaAZoCWgPQwgllSnmoEZkQJSGlFKUaBVN6ANoFkdA4xNUTmnwX3V9lChoBmgJaA9DCOZ4BaKnFHBAlIaUUpRoFU0OAWgWR0DjE164sEq2dX2UKGgGaAloD0MINlfNcwRGcECUhpRSlGgVS9xoFkdA4xNhU1IiDHV9lChoBmgJaA9DCFVQUfUrVnJAlIaUUpRoFUvjaBZHQOMTbz3bmEJ1fZQoaAZoCWgPQwjUDRR459pyQJSGlFKUaBVLzGgWR0DjE3GEoOQRdX2UKGgGaAloD0MIUAEwngEZcECUhpRSlGgVTQkBaBZHQOMTemMS9M91fZQoaAZoCWgPQwig4GJFDbZvQJSGlFKUaBVL9GgWR0DjE4WjbBXTdX2UKGgGaAloD0MIz6Pi/444NECUhpRSlGgVS2RoFkdA4xOPH1Fpf3V9lChoBmgJaA9DCLIQHQJHGnBAlIaUUpRoFUvdaBZHQOMTkoFC9h91fZQoaAZoCWgPQwhqwvaTsWxiQJSGlFKUaBVN6ANoFkdA4xOW5IYm9nV9lChoBmgJaA9DCJRQ+kJI9WBAlIaUUpRoFU3oA2gWR0DjE5mm8/UwdX2UKGgGaAloD0MIWWlSCrqEb0CUhpRSlGgVS+NoFkdA4xOgzJhfB3V9lChoBmgJaA9DCDxqTIj5h3FAlIaUUpRoFUvuaBZHQOMTs6+SKWN1fZQoaAZoCWgPQwhHHR1XI3ZsQJSGlFKUaBVL7WgWR0DjE72TxG2DdX2UKGgGaAloD0MIn8coz/yickCUhpRSlGgVTdIBaBZHQOMTvhU96kZ1fZQoaAZoCWgPQwi7l/vkaE5yQJSGlFKUaBVNbgFoFkdA4xPJzsY2sXV9lChoBmgJaA9DCINuL2nMoHBAlIaUUpRoFUvpaBZHQOMT0M43m3h1fZQoaAZoCWgPQwiGHFvPEL9vQJSGlFKUaBVL3mgWR0DjE9EPikwfdX2UKGgGaAloD0MIvFmD99VvbkCUhpRSlGgVS99oFkdA4xPXe/gzg3V9lChoBmgJaA9DCJxrmKGxuHBAlIaUUpRoFU0lAWgWR0DjE9fzU7SzdX2UKGgGaAloD0MIh9wMN2CvbECUhpRSlGgVTQcBaBZHQOMT3ze2uxN1fZQoaAZoCWgPQwjQX+gRo+tgQJSGlFKUaBVN6ANoFkdA4xPfOYIBzXV9lChoBmgJaA9DCHhEhepm83BAlIaUUpRoFUvnaBZHQOMT4CmsNlR1fZQoaAZoCWgPQwiqfxDJEDViQJSGlFKUaBVN6ANoFkdA4xPruQp4KXV9lChoBmgJaA9DCIWVCioqWnFAlIaUUpRoFUvWaBZHQOMT7Z/5Lyt1fZQoaAZoCWgPQwhgOUIGMjJwQJSGlFKUaBVLy2gWR0DjE/RrMTvidX2UKGgGaAloD0MIaY1BJwQjYkCUhpRSlGgVTegDaBZHQOMT/dG0/np1fZQoaAZoCWgPQwghsHJoEX5uQJSGlFKUaBVL1WgWR0DjFAnUMoc8dX2UKGgGaAloD0MI7ginBe/8cECUhpRSlGgVS9toFkdA4xQLB4t6HHV9lChoBmgJaA9DCASNmUQ9im5AlIaUUpRoFUvhaBZHQOMUE5YzSCx1fZQoaAZoCWgPQwjLZaNz/hJvQJSGlFKUaBVNTAFoFkdA4xQYhpHqeXV9lChoBmgJaA9DCPAXsyXrVHJAlIaUUpRoFUvSaBZHQOMUGPdGiHt1fZQoaAZoCWgPQwiSIFwBhXZdQJSGlFKUaBVN6ANoFkdA4xQZkzXSSnV9lChoBmgJaA9DCGOcvwkFgHJAlIaUUpRoFUv2aBZHQOMUGfbAUL51fZQoaAZoCWgPQwg+rg0VI4NwQJSGlFKUaBVL32gWR0DjFBuzposadX2UKGgGaAloD0MIfUCgM6micUCUhpRSlGgVS+loFkdA4xQeDPnjhnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 350,
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
lunar-noob/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bff2afb9404798a8717170545df0b2bdd71d0458d1e284e9f61464a20dfda3b1
|
3 |
+
size 87929
|
lunar-noob/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc0a9c2b9021802962927c2c605ccf923fdabc150856d9f4c3054573c2c178b0
|
3 |
size 43201
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 259.53021867613006, "std_reward": 21.51937964511484, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T19:44:07.787206"}
|