Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
|
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- AntBulletEnv-v0
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: A2C
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: AntBulletEnv-v0
|
| 16 |
+
type: AntBulletEnv-v0
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 1964.55 +/- 27.67
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
| 25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d61d9e7055dd7d8a8dec1d1b5f6a539b195323bf2853e0fd703c6270cd8ca582
|
| 3 |
+
size 129265
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f14ca6c8280>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14ca6c8310>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14ca6c83a0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14ca6c8430>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f14ca6c84c0>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f14ca6c8550>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14ca6c85e0>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14ca6c8670>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f14ca6c8700>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14ca6c8790>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14ca6c8820>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14ca6c88b0>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f14ca6c6ac0>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {
|
| 24 |
+
":type:": "<class 'dict'>",
|
| 25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
| 26 |
+
"log_std_init": -2,
|
| 27 |
+
"ortho_init": false,
|
| 28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
| 29 |
+
"optimizer_kwargs": {
|
| 30 |
+
"alpha": 0.99,
|
| 31 |
+
"eps": 1e-05,
|
| 32 |
+
"weight_decay": 0
|
| 33 |
+
}
|
| 34 |
+
},
|
| 35 |
+
"observation_space": {
|
| 36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
| 38 |
+
"dtype": "float32",
|
| 39 |
+
"_shape": [
|
| 40 |
+
28
|
| 41 |
+
],
|
| 42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
| 43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
| 44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
| 45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
| 46 |
+
"_np_random": null
|
| 47 |
+
},
|
| 48 |
+
"action_space": {
|
| 49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
| 51 |
+
"dtype": "float32",
|
| 52 |
+
"_shape": [
|
| 53 |
+
8
|
| 54 |
+
],
|
| 55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
| 56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
| 57 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 58 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 59 |
+
"_np_random": null
|
| 60 |
+
},
|
| 61 |
+
"n_envs": 4,
|
| 62 |
+
"num_timesteps": 2000000,
|
| 63 |
+
"_total_timesteps": 2000000,
|
| 64 |
+
"_num_timesteps_at_start": 0,
|
| 65 |
+
"seed": null,
|
| 66 |
+
"action_noise": null,
|
| 67 |
+
"start_time": 1679684450873707476,
|
| 68 |
+
"learning_rate": 0.00096,
|
| 69 |
+
"tensorboard_log": null,
|
| 70 |
+
"lr_schedule": {
|
| 71 |
+
":type:": "<class 'function'>",
|
| 72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 73 |
+
},
|
| 74 |
+
"_last_obs": {
|
| 75 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMucXD+4sLq+/Y0PP+flwz9xFK2/oFcjv8WMgT9khwy//7NJP2PQZL9klsg/i4Navzyhlr9avKM/YUXcvxb8xj4/8wq/fOq6vtMFOT9n4DVAiu8Mv6jGXD8QXUG/tAk3P0+6VD925wQ/QGjoPqtxlb++ouw9IlO3vUQNDj8DiIY/FDumv7Lfar8xPY4/0gQSvtF2Wj8UiT29elaDPzJep74LQIG/TIeUPyE2ob95UMU+fTStvhqrCT9A9V8/07S3PFlFnr7N1m8/mmwjv5VGiT9PulQ/ducEP0Bo6D6rcZW/TykWPtjEPj6iDP0+lHGAP7fVKD+uzbO+o3F2PdZRb7/ko1k/NfcXvL3ZqDx/nWy/sFuVPtWUuz8B5SQ/pR7BP70UBj+LNhZAX/JfP1kuyzx+kz+/efUdP6e6Gj+b8sw+iQmav3bnBD9v/gzAHERbP3fXBz8LOgs/X1GoPvWhoD+WWLW7ygW4vzeOez8a4N6+G+IFP5vb/D5ZugE/gTyyPw+kNTx7CL6/VI5lv3s/Dz/6Uys/bAOcv8JxJD9UDbS/SjxVvwz9bD1IvW6/VnHDPYkJmr925wQ/QGjoPqtxlb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
| 77 |
+
},
|
| 78 |
+
"_last_episode_starts": {
|
| 79 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
| 81 |
+
},
|
| 82 |
+
"_last_original_obs": {
|
| 83 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB+1Sw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvJkSPgAAAACEVvu/AAAAAMbh/z0AAAAA6mnuPwAAAAAihAg+AAAAADnj3j8AAAAA9aYPPAAAAAB0kADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIYOlNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgETjDL0AAAAAeRvhvwAAAACD2gA9AAAAAN+u+j8AAAAARw9NPAAAAACLv/s/AAAAACc22DwAAAAAlpjsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF4xz7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICmyLY8AAAAABmG478AAAAA5b2vvQAAAACyufs/AAAAACrMPr0AAAAA8j/dPwAAAADFP909AAAAAF1b/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgRl42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5nTxvQAAAAA+5OG/AAAAAMAxrz0AAAAAWtLxPwAAAAAa3iO8AAAAAMpI/z8AAAAAKDFkPQAAAAButuC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
| 85 |
+
},
|
| 86 |
+
"_episode_num": 0,
|
| 87 |
+
"use_sde": true,
|
| 88 |
+
"sde_sample_freq": -1,
|
| 89 |
+
"_current_progress_remaining": 0.0,
|
| 90 |
+
"ep_info_buffer": {
|
| 91 |
+
":type:": "<class 'collections.deque'>",
|
| 92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGwFtk4FRqMAWyUTegDjAF0lEdAqmaBiqhlDnV9lChoBkdAmlXosVclgWgHTegDaAhHQKpnj0KZ2IR1fZQoaAZHQJwS4NpdrwhoB03oA2gIR0Cqa4078vVWdX2UKGgGR0CeBbKMefZmaAdN6ANoCEdAqm04s052hnV9lChoBkdAmS0DVMEidWgHTegDaAhHQKpzq5uIhyN1fZQoaAZHQJhL28WbgCRoB03oA2gIR0CqdUBXbM5fdX2UKGgGR0CbIYSSvC/HaAdN6ANoCEdAqnsqMJhOQHV9lChoBkdAnxd6MrEtNGgHTegDaAhHQKp82jTKDCh1fZQoaAZHQJxvK6K+BYpoB03oA2gIR0Cqgk6mwaBJdX2UKGgGR0CZs6SCvovBaAdN6ANoCEdAqoN1elbeM3V9lChoBkdAn3KQ8W9DhWgHTegDaAhHQKqHNQSBbwB1fZQoaAZHQJy1yKO1fE5oB03oA2gIR0CqiOfZ/Tb4dX2UKGgGR0CcKmhvBJqZaAdN6ANoCEdAqo5RvFWGRHV9lChoBkdAnKw4LgGbC2gHTegDaAhHQKqPgvnKW9l1fZQoaAZHQJtqVKujh1loB03oA2gIR0CqlTkqtozvdX2UKGgGR0Cc1e6nzg/DaAdN6ANoCEdAqpfB0ZFXrHV9lChoBkdAm30VKsdT52gHTegDaAhHQKqdy4Cp3ot1fZQoaAZHQJ5ncEbHZK5oB03oA2gIR0CqntiMxXXAdX2UKGgGR0CaMvqUeMhpaAdN6ANoCEdAqqKd+XqqwXV9lChoBkdAnhqm3F1jiGgHTegDaAhHQKqkOxwhnrZ1fZQoaAZHQJhxTEIgNgBoB03oA2gIR0CqqbzVUdaMdX2UKGgGR0CZSaG1hLGraAdN6ANoCEdAqqrM/0NBnnV9lChoBkdAmBUyJCSid2gHTegDaAhHQKqvN7BwdbR1fZQoaAZHQJaN/Ue+23NoB03oA2gIR0CqsZiXpnpTdX2UKGgGR0CZDV2B8QZoaAdN6ANoCEdAqrkwUrTYunV9lChoBkdAl4A5iI+GGmgHTegDaAhHQKq6U9bor4F1fZQoaAZHQJRf2TmnwXtoB03oA2gIR0CqviQUg0TDdX2UKGgGR0CYQPxA0KqoaAdN6ANoCEdAqr/V3+uNgnV9lChoBkdAkdB9Aood/GgHTegDaAhHQKrFQAS39aV1fZQoaAZHQJn8LHU+cH5oB03oA2gIR0Cqxkm51/2CdX2UKGgGR0CalKuV5a/zaAdN6ANoCEdAqsoO1YyO73V9lChoBkdAmBtP7FbV0GgHTegDaAhHQKrL3Roh6jZ1fZQoaAZHQJpn25NGmUJoB03oA2gIR0Cq1BpSBK+SdX2UKGgGR0CYmPswco6TaAdN6ANoCEdAqtWdRm9QGnV9lChoBkdAmQPQfMfRu2gHTegDaAhHQKrZYDTSb6R1fZQoaAZHQJeHb/5tWMloB03oA2gIR0Cq2w0ihWYGdX2UKGgGR0CZ4iEZzgdfaAdN6ANoCEdAquB5q7Ack3V9lChoBkdAlWn3jIaLoGgHTegDaAhHQKrhk94/u9h1fZQoaAZHQJ1/7RXwLE1oB03oA2gIR0Cq5Vp6po9LdX2UKGgGR0CYatRQaaTfaAdN6ANoCEdAqub53Tuv2XV9lChoBkdAmgQ2Xsw+MmgHTegDaAhHQKrt+xN7Bwd1fZQoaAZHQJnnFgSeyzJoB03oA2gIR0Cq77RWtEG8dX2UKGgGR0CbNQocrAgxaAdN6ANoCEdAqvTjELpiZ3V9lChoBkdAnFe3EZR8+mgHTegDaAhHQKr2jOjZcs11fZQoaAZHQJoxXYukDZFoB03oA2gIR0Cq/B9S/CZXdX2UKGgGR0CZJWJEYwZgaAdN6ANoCEdAqv0zOJLuhXV9lChoBkdAm9mDxkNF0GgHTegDaAhHQKsBBCemNzd1fZQoaAZHQJWy8+fRNRFoB03oA2gIR0CrAqiFTNt7dX2UKGgGR0Cbaa1g6U7kaAdN6ANoCEdAqwiPS0BwM3V9lChoBkdAnpnt9YwIt2gHTegDaAhHQKsKIUZeiSJ1fZQoaAZHwFFaPZZjhDRoB03oA2gIR0CrD/BcRlH0dX2UKGgGR0CcuZZaV2RraAdN6ANoCEdAqxIy3solU3V9lChoBkdAk7tYiTt9hWgHTegDaAhHQKsXtnjABT51fZQoaAZHQJps2liz9jxoB03oA2gIR0CrGMnpSrHVdX2UKGgGR0CV3D4sEq2CaAdN6ANoCEdAqxydU4rBkHV9lChoBkdAluefGuLaVWgHTegDaAhHQKseQju8brF1fZQoaAZHQJR/epWFN+NoB03oA2gIR0CrI8PGQ0XQdX2UKGgGR0CWG06IWP92aAdN6ANoCEdAqyTU3n6l+HV9lChoBkdAkEF1l9SdfGgHTegDaAhHQKsqDYWcjJN1fZQoaAZHQJqGio73fyhoB03oA2gIR0CrLJ8xsVL0dX2UKGgGR0CU+M59Vmz0aAdN6ANoCEdAqzNDeyiVSnV9lChoBkdAlayVA3T/hmgHTegDaAhHQKs0XxKg7HR1fZQoaAZHQJbxMMgEEDBoB03oA2gIR0CrODAOSW7fdX2UKGgGR0Ccq0tlI3BIaAdN6ANoCEdAqznVvKlpGnV9lChoBkdAmiFU34sVcmgHTegDaAhHQKs/QI7/4qR1fZQoaAZHQJoC0VZcLShoB03oA2gIR0CrQFEug6EKdX2UKGgGR0CacnU47zTXaAdN6ANoCEdAq0Q8MPSUknV9lChoBkdAmZa1R1oxpWgHTegDaAhHQKtGldnkDIR1fZQoaAZHQJj6+rbQC0ZoB03oA2gIR0CrTqFyR0U5dX2UKGgGR0CZ9P8CgbqAaAdN6ANoCEdAq0+ueg+Ql3V9lChoBkdAlLUafBeok2gHTegDaAhHQKtTdjXnQpp1fZQoaAZHQJkzxcMVk+ZoB03oA2gIR0CrVSSmQ8wIdX2UKGgGR0CZCtya/h2oaAdN6ANoCEdAq1qlvwVj7XV9lChoBkdAmHg6dMCcPWgHTegDaAhHQKtbtFNL1291fZQoaAZHQJjV24SYgJVoB03oA2gIR0CrX4Wki2UjdX2UKGgGR0CcCwxTKkmAaAdN6ANoCEdAq2EmTJQtSXV9lChoBkdAnDlFpsXSB2gHTegDaAhHQKtpF0OmR/51fZQoaAZHQJkZo6ZH/cZoB03oA2gIR0CrasSFoL5RdX2UKGgGR0CN4O5WBBiTaAdN6ANoCEdAq28vNeMQ3HV9lChoBkdAl6A7iuMdcWgHTegDaAhHQKtw6oOQQtl1fZQoaAZHQJdO3wc5sCVoB03oA2gIR0Crdq5JCjUNdX2UKGgGR0CYtRFg2IfsaAdN6ANoCEdAq3fHsPatcXV9lChoBkdAlI4S+cpb2WgHTegDaAhHQKt7t8cdYGN1fZQoaAZHQJcNvK/20zFoB03oA2gIR0CrfWmqHXVcdX2UKGgGR0CZPnWAwwj/aAdN6ANoCEdAq4RJdt2s73V9lChoBkdAma3mpAD7qWgHTegDaAhHQKuF7gWJrL11fZQoaAZHQJw9r6KtPpJoB03oA2gIR0Cri4ATqSowdX2UKGgGR0CZq4MAWBSUaAdN6ANoCEdAq40qgElme3V9lChoBkdAnMecoc7yQWgHTegDaAhHQKuSz3PAwf11fZQoaAZHQJo6xqCYkVxoB03oA2gIR0Crk+7TDwYtdX2UKGgGR0CZBQMCcPOIaAdN6ANoCEdAq5fay+pOvnV9lChoBkdAm1iSQ5myxGgHTegDaAhHQKuZlHZK3/h1fZQoaAZHQJw+Ia4tpVVoB03oA2gIR0Crn7W/rSmZdX2UKGgGR0CdZitDlYEGaAdN6ANoCEdAq6FIHmig03V9lChoBkdAngMkUbkwOGgHTegDaAhHQKunUamXPZ91fZQoaAZHQJ0qiPLgXM1oB03oA2gIR0CrqY5tFa0QdX2UKGgGR0CdFPyhBZ6laAdN6ANoCEdAq69CkAPuonV9lChoBkdAnTmlVHWjGmgHTegDaAhHQKuwXTAFgUl1fZQoaAZHQJ3t9o8IRiBoB03oA2gIR0CrtE0PQOWjdX2UKGgGR0CcaNS5iExqaAdN6ANoCEdAq7Xw2XLNfXVlLg=="
|
| 93 |
+
},
|
| 94 |
+
"ep_success_buffer": {
|
| 95 |
+
":type:": "<class 'collections.deque'>",
|
| 96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 97 |
+
},
|
| 98 |
+
"_n_updates": 62500,
|
| 99 |
+
"n_steps": 8,
|
| 100 |
+
"gamma": 0.99,
|
| 101 |
+
"gae_lambda": 0.9,
|
| 102 |
+
"ent_coef": 0.0,
|
| 103 |
+
"vf_coef": 0.4,
|
| 104 |
+
"max_grad_norm": 0.5,
|
| 105 |
+
"normalize_advantage": false
|
| 106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:972163cb5e35589252c73a8ac7be58d90e7d649dd7ae952c195892bfa065f454
|
| 3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:38f9496ede115de9b9cc314995169b56a6aaf1245f53bc4b0bab53e2e664608d
|
| 3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
| 2 |
+
- Python: 3.9.16
|
| 3 |
+
- Stable-Baselines3: 1.7.0
|
| 4 |
+
- PyTorch: 1.13.1+cu116
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 1.22.4
|
| 7 |
+
- Gym: 0.21.0
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f14ca6c8280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f14ca6c8310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f14ca6c83a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f14ca6c8430>", "_build": "<function ActorCriticPolicy._build at 0x7f14ca6c84c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f14ca6c8550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f14ca6c85e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f14ca6c8670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f14ca6c8700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f14ca6c8790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f14ca6c8820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f14ca6c88b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f14ca6c6ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679684450873707476, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMucXD+4sLq+/Y0PP+flwz9xFK2/oFcjv8WMgT9khwy//7NJP2PQZL9klsg/i4Navzyhlr9avKM/YUXcvxb8xj4/8wq/fOq6vtMFOT9n4DVAiu8Mv6jGXD8QXUG/tAk3P0+6VD925wQ/QGjoPqtxlb++ouw9IlO3vUQNDj8DiIY/FDumv7Lfar8xPY4/0gQSvtF2Wj8UiT29elaDPzJep74LQIG/TIeUPyE2ob95UMU+fTStvhqrCT9A9V8/07S3PFlFnr7N1m8/mmwjv5VGiT9PulQ/ducEP0Bo6D6rcZW/TykWPtjEPj6iDP0+lHGAP7fVKD+uzbO+o3F2PdZRb7/ko1k/NfcXvL3ZqDx/nWy/sFuVPtWUuz8B5SQ/pR7BP70UBj+LNhZAX/JfP1kuyzx+kz+/efUdP6e6Gj+b8sw+iQmav3bnBD9v/gzAHERbP3fXBz8LOgs/X1GoPvWhoD+WWLW7ygW4vzeOez8a4N6+G+IFP5vb/D5ZugE/gTyyPw+kNTx7CL6/VI5lv3s/Dz/6Uys/bAOcv8JxJD9UDbS/SjxVvwz9bD1IvW6/VnHDPYkJmr925wQ/QGjoPqtxlb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB+1Sw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvJkSPgAAAACEVvu/AAAAAMbh/z0AAAAA6mnuPwAAAAAihAg+AAAAADnj3j8AAAAA9aYPPAAAAAB0kADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIYOlNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgETjDL0AAAAAeRvhvwAAAACD2gA9AAAAAN+u+j8AAAAARw9NPAAAAACLv/s/AAAAACc22DwAAAAAlpjsvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF4xz7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICmyLY8AAAAABmG478AAAAA5b2vvQAAAACyufs/AAAAACrMPr0AAAAA8j/dPwAAAADFP909AAAAAF1b/L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgRl42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5nTxvQAAAAA+5OG/AAAAAMAxrz0AAAAAWtLxPwAAAAAa3iO8AAAAAMpI/z8AAAAAKDFkPQAAAAButuC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJGwFtk4FRqMAWyUTegDjAF0lEdAqmaBiqhlDnV9lChoBkdAmlXosVclgWgHTegDaAhHQKpnj0KZ2IR1fZQoaAZHQJwS4NpdrwhoB03oA2gIR0Cqa4078vVWdX2UKGgGR0CeBbKMefZmaAdN6ANoCEdAqm04s052hnV9lChoBkdAmS0DVMEidWgHTegDaAhHQKpzq5uIhyN1fZQoaAZHQJhL28WbgCRoB03oA2gIR0CqdUBXbM5fdX2UKGgGR0CbIYSSvC/HaAdN6ANoCEdAqnsqMJhOQHV9lChoBkdAnxd6MrEtNGgHTegDaAhHQKp82jTKDCh1fZQoaAZHQJxvK6K+BYpoB03oA2gIR0Cqgk6mwaBJdX2UKGgGR0CZs6SCvovBaAdN6ANoCEdAqoN1elbeM3V9lChoBkdAn3KQ8W9DhWgHTegDaAhHQKqHNQSBbwB1fZQoaAZHQJy1yKO1fE5oB03oA2gIR0CqiOfZ/Tb4dX2UKGgGR0CcKmhvBJqZaAdN6ANoCEdAqo5RvFWGRHV9lChoBkdAnKw4LgGbC2gHTegDaAhHQKqPgvnKW9l1fZQoaAZHQJtqVKujh1loB03oA2gIR0CqlTkqtozvdX2UKGgGR0Cc1e6nzg/DaAdN6ANoCEdAqpfB0ZFXrHV9lChoBkdAm30VKsdT52gHTegDaAhHQKqdy4Cp3ot1fZQoaAZHQJ5ncEbHZK5oB03oA2gIR0CqntiMxXXAdX2UKGgGR0CaMvqUeMhpaAdN6ANoCEdAqqKd+XqqwXV9lChoBkdAnhqm3F1jiGgHTegDaAhHQKqkOxwhnrZ1fZQoaAZHQJhxTEIgNgBoB03oA2gIR0CqqbzVUdaMdX2UKGgGR0CZSaG1hLGraAdN6ANoCEdAqqrM/0NBnnV9lChoBkdAmBUyJCSid2gHTegDaAhHQKqvN7BwdbR1fZQoaAZHQJaN/Ue+23NoB03oA2gIR0CqsZiXpnpTdX2UKGgGR0CZDV2B8QZoaAdN6ANoCEdAqrkwUrTYunV9lChoBkdAl4A5iI+GGmgHTegDaAhHQKq6U9bor4F1fZQoaAZHQJRf2TmnwXtoB03oA2gIR0CqviQUg0TDdX2UKGgGR0CYQPxA0KqoaAdN6ANoCEdAqr/V3+uNgnV9lChoBkdAkdB9Aood/GgHTegDaAhHQKrFQAS39aV1fZQoaAZHQJn8LHU+cH5oB03oA2gIR0Cqxkm51/2CdX2UKGgGR0CalKuV5a/zaAdN6ANoCEdAqsoO1YyO73V9lChoBkdAmBtP7FbV0GgHTegDaAhHQKrL3Roh6jZ1fZQoaAZHQJpn25NGmUJoB03oA2gIR0Cq1BpSBK+SdX2UKGgGR0CYmPswco6TaAdN6ANoCEdAqtWdRm9QGnV9lChoBkdAmQPQfMfRu2gHTegDaAhHQKrZYDTSb6R1fZQoaAZHQJeHb/5tWMloB03oA2gIR0Cq2w0ihWYGdX2UKGgGR0CZ4iEZzgdfaAdN6ANoCEdAquB5q7Ack3V9lChoBkdAlWn3jIaLoGgHTegDaAhHQKrhk94/u9h1fZQoaAZHQJ1/7RXwLE1oB03oA2gIR0Cq5Vp6po9LdX2UKGgGR0CYatRQaaTfaAdN6ANoCEdAqub53Tuv2XV9lChoBkdAmgQ2Xsw+MmgHTegDaAhHQKrt+xN7Bwd1fZQoaAZHQJnnFgSeyzJoB03oA2gIR0Cq77RWtEG8dX2UKGgGR0CbNQocrAgxaAdN6ANoCEdAqvTjELpiZ3V9lChoBkdAnFe3EZR8+mgHTegDaAhHQKr2jOjZcs11fZQoaAZHQJoxXYukDZFoB03oA2gIR0Cq/B9S/CZXdX2UKGgGR0CZJWJEYwZgaAdN6ANoCEdAqv0zOJLuhXV9lChoBkdAm9mDxkNF0GgHTegDaAhHQKsBBCemNzd1fZQoaAZHQJWy8+fRNRFoB03oA2gIR0CrAqiFTNt7dX2UKGgGR0Cbaa1g6U7kaAdN6ANoCEdAqwiPS0BwM3V9lChoBkdAnpnt9YwIt2gHTegDaAhHQKsKIUZeiSJ1fZQoaAZHwFFaPZZjhDRoB03oA2gIR0CrD/BcRlH0dX2UKGgGR0CcuZZaV2RraAdN6ANoCEdAqxIy3solU3V9lChoBkdAk7tYiTt9hWgHTegDaAhHQKsXtnjABT51fZQoaAZHQJps2liz9jxoB03oA2gIR0CrGMnpSrHVdX2UKGgGR0CV3D4sEq2CaAdN6ANoCEdAqxydU4rBkHV9lChoBkdAluefGuLaVWgHTegDaAhHQKseQju8brF1fZQoaAZHQJR/epWFN+NoB03oA2gIR0CrI8PGQ0XQdX2UKGgGR0CWG06IWP92aAdN6ANoCEdAqyTU3n6l+HV9lChoBkdAkEF1l9SdfGgHTegDaAhHQKsqDYWcjJN1fZQoaAZHQJqGio73fyhoB03oA2gIR0CrLJ8xsVL0dX2UKGgGR0CU+M59Vmz0aAdN6ANoCEdAqzNDeyiVSnV9lChoBkdAlayVA3T/hmgHTegDaAhHQKs0XxKg7HR1fZQoaAZHQJbxMMgEEDBoB03oA2gIR0CrODAOSW7fdX2UKGgGR0Ccq0tlI3BIaAdN6ANoCEdAqznVvKlpGnV9lChoBkdAmiFU34sVcmgHTegDaAhHQKs/QI7/4qR1fZQoaAZHQJoC0VZcLShoB03oA2gIR0CrQFEug6EKdX2UKGgGR0CacnU47zTXaAdN6ANoCEdAq0Q8MPSUknV9lChoBkdAmZa1R1oxpWgHTegDaAhHQKtGldnkDIR1fZQoaAZHQJj6+rbQC0ZoB03oA2gIR0CrTqFyR0U5dX2UKGgGR0CZ9P8CgbqAaAdN6ANoCEdAq0+ueg+Ql3V9lChoBkdAlLUafBeok2gHTegDaAhHQKtTdjXnQpp1fZQoaAZHQJkzxcMVk+ZoB03oA2gIR0CrVSSmQ8wIdX2UKGgGR0CZCtya/h2oaAdN6ANoCEdAq1qlvwVj7XV9lChoBkdAmHg6dMCcPWgHTegDaAhHQKtbtFNL1291fZQoaAZHQJjV24SYgJVoB03oA2gIR0CrX4Wki2UjdX2UKGgGR0CcCwxTKkmAaAdN6ANoCEdAq2EmTJQtSXV9lChoBkdAnDlFpsXSB2gHTegDaAhHQKtpF0OmR/51fZQoaAZHQJkZo6ZH/cZoB03oA2gIR0CrasSFoL5RdX2UKGgGR0CN4O5WBBiTaAdN6ANoCEdAq28vNeMQ3HV9lChoBkdAl6A7iuMdcWgHTegDaAhHQKtw6oOQQtl1fZQoaAZHQJdO3wc5sCVoB03oA2gIR0Crdq5JCjUNdX2UKGgGR0CYtRFg2IfsaAdN6ANoCEdAq3fHsPatcXV9lChoBkdAlI4S+cpb2WgHTegDaAhHQKt7t8cdYGN1fZQoaAZHQJcNvK/20zFoB03oA2gIR0CrfWmqHXVcdX2UKGgGR0CZPnWAwwj/aAdN6ANoCEdAq4RJdt2s73V9lChoBkdAma3mpAD7qWgHTegDaAhHQKuF7gWJrL11fZQoaAZHQJw9r6KtPpJoB03oA2gIR0Cri4ATqSowdX2UKGgGR0CZq4MAWBSUaAdN6ANoCEdAq40qgElme3V9lChoBkdAnMecoc7yQWgHTegDaAhHQKuSz3PAwf11fZQoaAZHQJo6xqCYkVxoB03oA2gIR0Crk+7TDwYtdX2UKGgGR0CZBQMCcPOIaAdN6ANoCEdAq5fay+pOvnV9lChoBkdAm1iSQ5myxGgHTegDaAhHQKuZlHZK3/h1fZQoaAZHQJw+Ia4tpVVoB03oA2gIR0Crn7W/rSmZdX2UKGgGR0CdZitDlYEGaAdN6ANoCEdAq6FIHmig03V9lChoBkdAngMkUbkwOGgHTegDaAhHQKunUamXPZ91fZQoaAZHQJ0qiPLgXM1oB03oA2gIR0CrqY5tFa0QdX2UKGgGR0CdFPyhBZ6laAdN6ANoCEdAq69CkAPuonV9lChoBkdAnTmlVHWjGmgHTegDaAhHQKuwXTAFgUl1fZQoaAZHQJ3t9o8IRiBoB03oA2gIR0CrtE0PQOWjdX2UKGgGR0CcaNS5iExqaAdN6ANoCEdAq7Xw2XLNfXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:35436c01a720a3047beff1a46b6bf295a41a6d46ad5ad64400181f705ddac3de
|
| 3 |
+
size 1024269
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 1964.547059257049, "std_reward": 27.668773980467176, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-24T20:08:25.335745"}
|
vec_normalize.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ebc957d6d6f668131c03f5614a68810c13e1666ab77c72ae59cc70eabb0ae911
|
| 3 |
+
size 2136
|