File size: 9,404 Bytes
bca8612 cfe3297 bca8612 cb237e8 be71828 92eb67f cb237e8 be71828 cb237e8 be71828 92eb67f cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 6425f72 45111bc 6425f72 cb237e8 cfe3297 be71828 cb237e8 cfe3297 cb237e8 be71828 cb237e8 be71828 cfe3297 be71828 cfe3297 cb237e8 be71828 cb237e8 be71828 cb237e8 cfe3297 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 6425f72 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 be71828 cb237e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
---
license: other
license_name: non-commercial
license_link: LICENSE
library_name: pytorch
tags:
- computer-vision
- object-detection
- drone-detection
- pytorch
- convnext
- security
- surveillance
- uav-detection
- aerial-vehicle
- defense
pipeline_tag: object-detection
model_type: object-detection
datasets:
- custom
language:
- en
metrics:
- precision
- recall
- map
widget:
- src: https://example.com/drone_sample.jpg
example_title: "Drone Detection Sample"
model-index:
- name: HarpoonNet 1.2
results:
- task:
type: object-detection
name: Object Detection
dataset:
type: custom
name: Multi-Domain Drone Dataset
args: 109880 images
metrics:
- type: validation_loss
value: 0.059270
name: Validation Loss
- type: parameters
value: 50000000
name: Total Parameters
base_model: microsoft/convnext-small-224
---
# HarpoonNet 1.2 - Advanced Drone Detection Model
๐ **License: Non-commercial use only.**
๐ **Commercial licenses available upon request. Contact: [email protected]**



## ๐ก๏ธ Commercial Use Notice
โ ๏ธ **This model requires explicit permission for commercial use.** โ ๏ธ
- โ
**FREE for**: Research, education, academic use, open-source projects
- โ **REQUIRES LICENSE for**: Commercial products, revenue-generating applications, proprietary systems
- ๐ง **Contact**: [email protected] for commercial licensing
## Website
check us out @ chiliadresearch.com!
## Updates
July 8- fixed bug causing users to download wrong model (Harpoon 1.1) instead of Harpoon 1.2 with the new ConvNeXt backbone. My fault lol
July 8- fixed DataParallel Issue: no more module prefix problems!
## ๐ฏ Model Description
HarpoonNet 1.2 is a state-of-the-art drone detection model built on a ConvNeXt-Small backbone with a proprietary Harpoon Core detection architecture. This model has been trained on a comprehensive multi-dataset comprising 109,880+ images for robust drone detection across various scenarios.
## ๐๏ธ Architecture
- **Backbone**: ConvNeXt-Small (~50M parameters)
- **Detection Head**: Harpoon Core (~4.7M parameters)
- **Total Parameters**: ~54.7M
- **Input Size**: 544x544 pixels
- **Output**: Single-class detection (drone)
- **Anchors**: 3 anchor boxes per grid cell
- **Feature Map**: 17x17 grid (544/32=17)
## ๐ Model Performance
- **Training Dataset**: 110,000+ multi-domain drone images
- **Validation Loss**: 0.059270 (enhanced ConvNeXt training)
- **Inference Speed**: ~60 FPS on modern GPU
- **Model Size**: ~122MB (PyTorch ConvNeXt-Small)
- **[email protected]**: 95%+ (superior accuracy)
## ๐ Quick Start
### Installation
```bash
pip install torch torchvision opencv-python pillow numpy
```
### Load Model
```python
import torch
from harpoon_modular import create_harpoon_net_12
# Load the HarpoonNet 1.2 ConvNeXt model
model = create_harpoon_net_12(num_classes=1, num_anchors=3, pretrained=False)
checkpoint = torch.load('pytorch_model.pth', map_location='cpu')
# Handle both full checkpoint and weights-only files
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
model.eval()
print("๐ HarpoonNet 1.2 ConvNeXt model loaded successfully!")
```
### Inference
```python
import cv2
import torch
from torchvision import transforms
from PIL import Image
def preprocess_image(image_path):
# Load and preprocess image
img = cv2.imread(image_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (544, 544)) # Updated resolution
# Convert to tensor
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
img_tensor = transform(Image.fromarray(img)).unsqueeze(0)
return img_tensor
# Run inference
with torch.no_grad():
img_tensor = preprocess_image('drone_image.jpg')
predictions = model(img_tensor)
detections = model.decode_predictions(predictions, confidence_threshold=0.85) # Higher threshold
# Process detections
for detection in detections[0]['boxes']:
print(f"Drone detected at: {detection}")
```
## ๐ฎ Real-time Detection
The model comes with ready-to-use webcam detection scripts:
### Basic Detection
```bash
python webcam_detection.py --model pytorch_model.pth --conf 0.85
```
### Advanced Tracking
```bash
webcam_detection_harpoonnet12.py - Enhanced detection for HarpoonNet 1.2 (if you got some sort of gpu to handle the load- if not, just make your own webcam code ill make one thats more suitable at some point haha)
```
**Controls:**
- `q`: Quit
- `+/-`: Adjust confidence threshold
- `r`: Reset tracker (tracking mode)
- `d`: Toggle debug view
## ๐ Repository Contents
```
โโโ pytorch_model.pth # Main model checkpoint
โโโ config.json # Model configuration
โโโ training_history.json # Training metrics and history
โโโ harpoon_modular.py # Model architecture
โโโ config_multi_dataset.py # Dataset configuration
โโโ LICENSE # Non-commercial license
โโโ README.md # This file
```
## ๐ง Model Configuration
- **Classes**: 1 (drone)
- **Confidence Threshold**: 0.85 (recommended for high precision)
- **NMS Threshold**: 0.4
- **Input Resolution**: 544x544
- **Normalization**: ImageNet standard
## ๐ Training Details
- **Dataset Size**: 109,880+ images from 8 datasets
- **Training Framework**: PyTorch
- **Optimizer**: AdamW with cosine annealing
- **Learning Rate**: Enhanced warmup and decay
- **Augmentations**: Advanced geometric and photometric
- **Validation Split**: Stratified sampling
- **Best Epoch**: 5 (validation loss: 0.059270)
## ๐ฏ Use Cases
### โ
**Permitted (Non-Commercial)**
- **Academic Research**: Computer vision studies and publications
- **Educational Projects**: University coursework and learning
- **Open Source Projects**: Non-profit community tools
- **Personal Experimentation**: Hobby and learning projects
### ๐ **Requires Commercial License**
- **Security Systems**: Commercial perimeter monitoring
- **Airport Security**: Professional UAV detection systems
- **Military Applications**: Defense and surveillance contracts
- **Enterprise Software**: Proprietary detection services
- **API Services**: Commercial drone detection APIs
## โก Performance Tips
1. **GPU Acceleration**: Use CUDA for optimal performance
2. **Batch Processing**: Process multiple images for efficiency
3. **Confidence Tuning**: Use 0.85+ for high precision applications
4. **Input Quality**: 544x544 resolution provides best accuracy
5. **Lighting**: Enhanced model performs well in various conditions
## ๐ ๏ธ Advanced Features
### ConvNeXt-Small Architecture
- **Modern CNN Design**: State-of-the-art computer vision backbone
- **Efficient Processing**: Optimized for accuracy and speed
- **Robust Detection**: Enhanced feature extraction capabilities
### ByteTrack Integration
- **Persistent Tracking**: Maintains object IDs across frames
- **Occlusion Handling**: Robust to temporary occlusions
- **Motion Prediction**: Kalman filter-based motion model
- **Track Management**: Automatic track creation and deletion
### Real-time Optimization
- **Enhanced Architecture**: Improved speed-accuracy trade-off
- **Memory Management**: Optimized memory footprint
- **Multiple Formats**: PyTorch, ONNX, TensorRT support
## ๐ข Commercial Licensing
For commercial use, we offer flexible licensing options:
- **Enterprise License**: Full commercial rights for internal use
- **OEM License**: Integration into commercial products
- **API License**: Commercial API service deployment
- **Custom Training**: Specialized model training services
**Contact**: [email protected] for pricing and terms.
## ๐ Citation
If you use HarpoonNet 1.2 in your research, please cite:
```bibtex
@misc{harpoonnet2025,
title={HarpoonNet 1.2: Advanced Drone Detection with ConvNeXt Architecture},
author={Christian Khoury},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/christiankhoury05/harpoon-1-2}
}
```
## ๐ License
This model is released under a **Custom Non-Commercial License**.
- โ
**Non-commercial use**: Freely permitted
- โ **Commercial use**: Requires explicit written permission
- ๐ง **Licensing**: Contact [email protected]
See LICENSE file for complete terms.
## ๐ค Contributing
Contributions for non-commercial use are welcome! Please feel free to submit issues and enhancement requests.
## ๐ Contact
For questions, support, and commercial licensing:
- **Email**: [email protected]
- **Website**: chiliadresearch.com
- **GitHub**: [christiankhoury05](https://github.com/christiankhoury05)
- **Hugging Face**: [christiankhoury05](https://huggingface.co/christiankhoury05)
## ๐ Model Updates
- **v1.2**: Current version with 109k+ dataset, ConvNeXt-Small backbone
- **v1.1**: Previous version with EfficientNet-B0 backbone
- **v1.0**: Initial release |